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What is Time Series?

– Statistics starts considering independently, identically distributed data.

– We have some underlying true distribution and bunch of observations from it — X .

– We can easily estimate the population (true) mean µ using the sample mean x̄t :=
1
T
∑T

t=1 xt

– Sometimes order matters.
– Did Trump copy the term “fake news” from the mainstream media, or vice-versa?
– Does it make sense to think of William Randolph Hearst, Walter Cronkite, and Stephen Colbert as

doing the same thing.
– We cannot take means if the data are not from the same distribution.
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Why Time Series for Communications?

News is Dynamic!
– Something is only news if it is new.

– We must figure out what’s new.

– Order matters.

Examples:
1. What is “Fake News”? Who started talking about it first?

2. Did the 2017 Congressional Baseball Shooting get as much coverage as we expected?

3. What about the Russian bots?
– Are the bots just the natural consequence of AI and online media or was the 2016 Election special?
– Did they even matter? If they hadn’t posted would someone have taken their place?

Sangrey Introduction to Time Series 2 / 32



Decomposition Time Series

– A time series has 4 components.
1. Trend
2. Season
3. Cycle (Predictable but not persistent components.)
4. Noise
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Plan for the Talk

Goal:
Learn how to grasp the dynamics of a process.

(Exploratory Data Analysis for Time Series!)

1. Consider Legal Immigration to the U.S.
– Figure out how to separate the trend, predictable movements (cycle), and noise.
– Discuss when you can view data from different periods as being from the same distribution and what

to do about it if you can’t.

2. Baker, Bloom, and Davis (2016) measure people’s uncertainty about economic policy changes by
aggregating over 12,000 newspaper articles into a single measure.

– Published in one of the best economics journals and already has almost 2000 citations.
– This uncertainty has a weakly cycle, (i.e. seasonality), we’ll extend the type of analysis to handle this

case as well.
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U.S. Legal Immigration
Annual Data from 1820 to 2016

197 Observations
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U.S. Legal Immigration Since WWI

Annual Data from 1918 to 2016

1920 1940 1960 1980 2000 2020

0

250000

500000

750000

1000000

1250000

1500000

1750000
Nu

m
be

r

Sangrey Introduction to Time Series 6 / 32



U.S. Legal Immigration

Count 197
Mean 4.20 × 105

Standard
Deviation 3.58 × 105

Skewness 1.09
Excess Kurtosis 0.76

Histogram
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Log Immigration

Count 197
Mean 12.43

Standard Deviation 1.23
Skewness −0.99

Excess Kurtosis 0.53

Histogram
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Standardized Log Immigration
Annual Data from 1918 to 2016
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Autocorrelation

Autocorrelation(s) = Corr(xt , xt−s) =
Cov(xt , xt−s)√

Var(xt)
√

Var(xt−s)

Autocorrelation Function
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What is a Trend?

– When can we take means / variances, run OLS, etc?
– Simple answer: When the data are not trending.
– Intuitively, we need to the data to come from the some distribution in 1820, 1900, and 2010.

– Statisticians & econometricians call this stationarity.
– If the data follow a random walk with drift, the data aren’t stationary!

xt = xt−1 + ηt

– The data do not revert some long run mean.

xt = (xt−2 + ηt−1) + ηt = (xt−3 + ηt−2) + ηt−1 + ηt = xt−h +
h−1∑
j=0

ηt−j
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Let’s Test This
– Run OLS: xt = β0 + βxt−1 + ηt .

– β =
(

12.86 0.94
)

.

– We cannot use Student’s t-test to check for stationarity when the process might have infinite
variance.

– Use the Augmented Dickey-Fuller (ADF) Test.
– Standard Programming languages have commands to do this that report the p-values.
– p-value: 8.03% > 5%
– We cannot reject a random-walk.

– Can we reject mean-reversion in favor a unit-root?

– Use the Kwiatkowski-Phillips-Schmidt-Schin (KPSS) test.
– p-value: 2.66% < 5%.
– Yes, we can reject!
– Immigration has a trend, (or at least it is not stationary).
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How Do We Fix Stationarity?

– We difference the data.

– Recall xt = xt−1 + ηt =⇒
xt − xt−1 = ηt .

– Define x̃t = xt − xt−1.

– The data have a much less
obvious pattern.

– A pattern is a signal.

– We want to find signals.

– When we’re done, we’ll have
noise.

Differenced Log Immigration (≈ percent-change)
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Are Any Patterns Left

Autocorrelation Function After we Remove the Trend
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Autoregressive (AR) Models

x̃t = β0 + β1x̃t−1 + β2x̃t−2 + · · ·+ βk x̃t−k + ηt

β0 β1 β2 β3 β4 β5 σ
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In-Sample Forecasts

Fitted Values

1834 1874 1914 1954 1994
500000

0

500000

1000000

1500000

2000000
Data
Fitted Values

Residuals

1847 1887 1927 1967 2007

400000

200000

0

200000

400000

Sangrey Introduction to Time Series 16 / 32



Data: Economic Policy Uncertainty Index

– Measures people’s beliefs about economic activity using their words.

– Uses a database of 10 leading U.S. newspapers

– Measures the frequency of the following trio of terms:
1. economic, economy
2. Congress, deficit, Federal Reserve, legislation, regulation, White House
3. uncertain, uncertainty

– As mentioned above, it was published two years ago and already has almost 2000 citations on
Google Scholar.
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Economic Policy Uncertainty Index

Count 12,266
Mean 101.08

Standard Deviation 68.62
Skewness 1.85

Excess Kurtosis 5.90
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Economic Policy Uncertainty Index

Daily Data 12,266 days
Mean 4.41

Standard
Deviation 0.67

Skewness −0.31
Excess Kurtosis 0.35
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Economic Policy Uncertainty Autocorrelation Function

– Clearly not a random walk.

– Still persistent.

– Weekly peaks
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Seasonality

– Can we regress xt on xt−7?

xt = β0 + βw xt−7 + ηt

β0 β1 σ

2.36 0.44 0.36
[73.72] [47.88]

Autocorrelation Plot
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Autoregressive Models

xt = β0 + β1xt−1 + · · ·βkxt−k + ηt

β0 β1 β2 σ

4.41 0.46 0.59
[441.37] [58.11]

1.84 0.36 0.22 0.33
[46.41] [44.10] [25.86]

AR(1) Model
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Can We Combine the Autoregressive and Seasonality Models?

– Yes!
– Intuition:

1. Apply seasonality model to the data.
2. Apply autoregressive model to those residuals.

– Not just adding a weekly lag to the autoregressive model. We must worry about interactions.
– Standard statistical programs can do this for us, we just have to tell them to.
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Autoregressive + Season Model

β0 β1 β2 β3 β4 β5 βw1 βw2 σ

2.01 0.35 0.30 0.32
[31.49] [43.24] [37.18]

1.70 0.30 0.18 0.26 0.31
[49.49] [35.94] [20.85] [31.70]

1.17 0.25 0.12 0.09 0.05 0.09 0.18 0.17 0.30
[31.49] [29.68] [13.02] [9.81] [6.21] [9.88] [22.07] [20.33]
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Autocorrelation Plots

AR(1) + Weekly Season with 1 Lag
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Results

Fitted Values
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Is it Signal or Noise

R2 = 1 −
∑T

t=1 η̂
2
t∑T

t=1(xt − x̄)2

– OLS picks β̂ to make
∑T

t=1 η̂
2
t as small as possible.

– As we add more parameters, this gets easier and easier.
– We will start fitting noise eventually!
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Example : U.S. Suicide Rate
H
a
n
g
in
g
	s
u
ic
id
e
s

U
S
	s
p
e
n
d
in
g
	o
n
	s
c
ie
n
c
e

US	spending	on	science,	space,	and	technology
	correlates	with	

Suicides	by	hanging,	strangulation	and	suffocation

Hanging	suicides US	spending	on	science

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

6000	suicides

8000	suicides

4000	suicides

10000	suicides

$15	billion

$20	billion

$25	billion

$30	billion

tylervigen.com

Sangrey Introduction to Time Series 28 / 32



Example : Drownings
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AIC and BIC

1. AIC
– Akaike Information Criterion

– AIC = −2
∑T

t=1 u2
t + 2(#Params) (under Normality)

2. BIC
– Bayesian Information Criterion

– Also called Schwarz Information Criterion (SIC)

– BIC = −2
∑T

t=1 u2
t + log(T )(#Params) (under Normality)

– Useful if you think the true model is one of the ones under consideration.

– Picks more parsimonious models than AIC.
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Selected Model

– BIC Chooses 6 AR lags and 4 seasonal lags.

– AIC Chooses 10 AR lags and 4 seasonal lags
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Conclusion

1. Time Series analysis is useful because time matters.
– We often care what came first or if something acted as we would expect.

2. Time Series can be decomposed into Trend + Seasonal + Cycle + Noise

3. The goal is to figure out what the trend, seasonal and cycle are.

4. We must be careful to ensure the distribution is not changing too much over time. (Stationarity).

5. We can use standard statistical packages, graphs, and common sense to do this well.
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