
Feasible Multivariate Density Estimation
Using Random Compression∗

Minsu Chang † Paul Sangrey ‡

December 6, 2020

Abstract

Given vector-valued data xt ∈ RD for t = 1, . . . , T , nonparametric density estimators
typically converge slowly when the number of series D is large. We extend ideas from
the random compression literature to nonparametric density estimation, constructing an
estimator that, with high probability, converges rapidly even when applied to a large,
fixed number of series. We devise a discrete random operator to compress the data so
that the density of the compressed data can be represented as a parsimonious mixture
of Gaussians. We show that this mixture representation closely approximates the true
distribution. Then we provide a computationally efficient Gibbs sampler to construct our
Bayesian density estimator using Dirichlet mixture models. We estimate both marginal
and transition densities for both i.i.d. and Markov data. With high probability with respect
to the randomness of the compression, our estimators’ convergence rate —

√
log(T )/

√
T —

depends on D only through the constant term. Our procedure produces a well-calibrated
joint predictive density for a macroeconomic panel.
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1 Introduction

Estimating multivariate densities is a classic problem across econometrics, statistics, and

computer science. Researchers often find parametric assumptions restrictive and their models

sensitive to deviations from these assumptions. On the other hand, given vector-valued data

xt ∈ RD for t = 1, . . . , T , nonparametric estimators for the data’s joint or conditional density

converge very slowly when the number of series D is large. Given that we cannot avoid this curse

of dimensionality, we construct a nonparametric density estimator that, with high probability,

converges faster than the minimax rates for a large but fixed number of series by extending ideas

from the random compression literature. This paper will be useful for practitioners, especially

those who do not want a priori to choose which parametric model to use, because the procedure

produces parsimonious nonparametric density estimates for a large number of time series with a

computationally efficient algorithm.

Various authors have studied random compression which transforms the high-dimensional

data to a much lower dimensional space while approximately preserving the distances between

data points with high probability (e.g., Johnson and Lindenstrauss (1984); Klartag and Mendelson

(2005); Boucheron et al. (2013); Talagrand (2014), Koop et al. (2019)). Based on this idea, we

devise a discrete random compression operator that induces the compressed data’s distribution

to be close to the data’s true distribution. To the best of our knowledge, this paper is the first

to extend this idea of randomly compressing the data to the space of densities. An advantage

of our random operator is that the compressed data’s distribution can be represented as a

parsimonious mixture of Gaussians. We then develop a computationally efficient estimator for

this representation. Given δ > 0, high probability 1−2δ with respect to the random compression,

our estimators converge rapidly and their convergence rate —
√

log(T )/
√
T — depends on D

only through the constant term. In contrast, minimax rates bound the worst-case behavior of

the estimator. By only requiring the estimators converge at the given rate with probability

1− 2δ with respect to randomness in the compression instead of with probability 1 (as minimax

rates do), substantially faster rates are obtained.1

We consider a data generating process for a sequence of conditional densities p(xt|Ft−1) given

1Building upon existing probabilistic guarantees in the data compression literature, we show that fast rates of
density estimation can be recovered, at least probabilistically.
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filtrations Ft−1 for t = 1, . . . , T . We assume that each of the p(xt|Ft−1) is an infinite Gaussian

mixture.2 We use random compression that operates on the length of the time series T to

construct an approximating distribution in a series of steps. First, we construct a discrete random

operator that clusters each vector xt into a Gaussian component of the mixture representation

and also endogenously determines the number of mixture components. This random operator is

a compression device that approximately preserves the norms of the individual data points that

are originally from an infinite Gaussian mixture. The induced distribution after compression has

a Gaussian mixture representation whose mixture probabilities do not depend on the data. In

this regard, our random compression is data-agnostic.3 We then show that, with high probability

with respect to this data-agnostic measure, the number of mixture components only depends

logarithmically on T .

Second, we show that this approximating mixture is close to the data’s true density with

high probability. To build intuition, suppose the data {xt}Tt=1 are from the mean-zero normal

distribution with covariance {Σt}Tt=1. The value of the probability density function evaluated

at xt is determined by the data’s weighted norm, x′tΣ
−1
t xt. If a random compression operator

preserves this norm of the data for all xt, the induced density after compression will be close

to the true density of xt. Generalizing this intuition, we show uniform bounds on the local

divergence between the norms of the data points imply bounds on the divergence between the

densities such as Hellinger and Kullback-Leibler. We devise a random compression operator

that preserves the relevant norms of the data and we show the induced Gaussian mixture

representation closely approximates the data’s true density as well.

We then relate our approximating Gaussian mixture representation to a Gaussian mixture

whose latent mixing measure is Dirichlet. This lets us develop a Gibbs sampler based on

Dirichlet mixture models to estimate marginal and transition densities for both i.i.d. and Markov

data. Our principal contribution in this part lies in placing the Dirichlet process prior on the

mixture identities’ transitions instead of placing the prior period-by-period. We then adapt

state-of-the-art computational samplers for the static case to this dynamic case. The resulting

2This is a very general assumption that, for example, is implied by the existence of any absolute moment
(Tokdar (2006)). In particular, DGPs we study do not need to be supersmooth as assumed in previous papers
that find similar rates of convergence, e.g.,Ghosal and van der Vaart (2007b).

3Each element of our random compression matrix is drawn in a way that does not depend upon the data.
Several papers such as Achlioptas (2003) and Guhaniyogi and Dunson (2015) study random compression in this
data oblivious way.
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sampler only takes a few minutes on a standard computer to make thousands of draws from the

posterior.

This paper is closely related to the literature using mixture distributions to estimate

unconditional densities (Ghosal and van der Vaart, 2017). It provides a dynamic generalization

of the infinite-mixture representation. This paper complements alternative methods to construct

Bayesian conditional density estimators (e.g., Geweke and Keane (2007); Norets (2010); Pati

et al. (2013)). Furthermore, in contrast to our random compression approach, much of the

nonparametric literature indexes the functions it approximates by some smoothness class.

These papers show that requiring the estimators to be consistent forces the estimator and the

approximation, which is deterministic, to use the same number of terms asymptotically. For

example, Stone (1980)’s minimax estimation procedure constructs a deterministic approximation

that requires T g(D) terms for some g that depends upon the smoothness class under consideration

(Yang and Barron (1999); Ichimura and Todd (2007)).

Instead, we construct a bound for the number of mixture components as a function of T

that holds with high probability. This probability is with respect to the data-agnostic random

compression procedure that determines the number of mixture components, similar to the results

in the random compression literature. In particular, we consider an asymptotic experiment

where D is medium to large but fixed and T grows. We then convert the bound on the number of

mixture components into convergence rates for the density estimators. With high probability, our

estimators’ convergence rate —
√

log(T )/
√
T for both the marginal density and the transition

density — depend on D only through the constant term, instead of decaying exponentially fast

in D as minimax rates do. Even though we cannot beat the minimax rate in general (that is

impossible), we show our estimators usually perform well even when D is large. We only need

to tolerate an arbitrarily small probability of the estimators converging slowly. In particular,

we show that the distance between the induced mixture representation and the data’s true

distribution is small even when we take the supremum over the set of true data generating

processes and D is a large constant.4

We organize the paper as follows. Section 2 describes the data generating process. Section 3

constructs the sieve and provides conditions under which it approximates the true density well.

4We show our estimators converge rapidly with high probability. We make no claim that these are the only
estimators that converge rapidly with high probability.
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Section 4 proves our estimators converge at the rate given above with high probability. Section 5

provides a computationally efficient Gibbs sampling algorithm to estimate our sieve. Section 6

analyzes the model’s performance in a simulation with Student’s t-distributed shocks. Section 7

empirically analyzes a monthly macroeconomic panel showing our method works well in practice.

Section 8 concludes. The appendices contain the proofs.

2 Data Generating Process

We now specify the set of data generating processes (DGPs) that we allow.

Definition 1 (Data Generating Process). The data XT ∈ RT×D is obtained by stacking the

vector xt ∈ RD over t = 1, . . . , T . X ′T s conditional densities given filtration Ft−1 for each time

period are

pT (xt | Ft−1) :=
∞∑
k=1

Πp
t−1,kφ (xt |xt−1βk,t,Σk,t) , (1)

where Πp
t−1,k is the mixture probability of the kth component and φ (xt |xt−1βk,t,Σk,t) is the

probability density function of normal distribution having mean xt−1βk,t and covariance Σk,t.

The Πp
t−1,k must be a valid Markov transition matrices whose entries are nonnegative real

numbers.

The data’s conditional densities — pT (xt | Ft−1) — have an infinite Gaussian mixture

representation for each time period. Each mixture component has an associated mixture

probability, Πp
t−1,k and component-specific parameters, βk,t, and Σk,t. We let the true DGP

depend upon T because at this point we are only approximating the density for a fixed T .

We now define the approximating model in Definition 2 that is a Gaussian mixture with

KT components. The number of components KT governs the complexity of the model and so

grows with T . Dirichlet mixture models have been used in a wide variety of environments. For

example, Fox (2009) studies similar Markov processes. Our contribution does not lie in the

modeling front, but rather in relating Dirichlet processes to a discrete random compression

operator that induces the mixture representation as in Definition 2.
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Definition 2 (Approximating Model).

qT (xt | Ft−1) :=

KT∑
k=1

Πq
t−1,kφ (xt |xt−1βk,Σk) . (2)

We use the terms mixture and cluster interchangeably. Each cluster’s (mixture’s) components,

(βk,Σk), no longer have time t subscripts. The idea is that we can reuse the latent variables

(βk,t,Σk,t) across time. Since the clusters are defined differently in Definition 1 and Definition 2,

no simple relationship between the parameters exists. This is also the case with the mixture

probabilities. We use the notation Πp
t−1,k and Πq

t−1,k above to highlight that they are different

objects. In the paper, we drop the superscripts p and q when it is clear what object we refer to.

Throughout, we use µT = E[XT ] to refer to the TD-dimensional mean vector. We also consider

the rescaled data that lie on the unit hypersphere:

X̃T :=
XT − µT
‖XT − µT‖L2

∈ STD−1 =
{
X ∈ RT×D ∣∣ ‖X‖L2

= 1
}
, (3)

where ‖·‖L2
is the L2-norm. Since X̃T is on the unit hypersphere, it is a compact space for

any fixed T . Since XT − µT is a zero-mean Gaussian conditional on a mixture component, its

TD× TD covariance matrix completely determines its component-wise distributions. We define

the densities of X̃T as we did for XT above and denote them p̃T and q̃T .

We impose the following assumptions to derive our results:

Assumption 1. Assume the conditional densities pT (xt | Ft−1) given filtration Ft−1 can be

represented as infinite Gaussian mixtures for all t = 1, . . . , T as in Equation (1). Further assume

that the xt ∈ RD have uniformly bounded means µt and covariances Σt where the Σt are positive-

definite. That is, supt≥1‖µt‖L1
< C1 <∞ and the minimum and the maximum eigenvalues of

Σt, denoted by λmin(Σt) and λmax(Σt), satisfy 0 < λmin(Σt) and λmax(Σt) < C2 <∞ for some

constants C1 and C2.

Because Assumption 1 allows for infinitely many components and does not uniformly bound

the variances from below, it is a very general assumption. For example, Tokdar (2006) shows

that any density with a finite absolute moment could be approximated by a mixture of normals.5

5In other words, if there exists an η > 0 where the true density p0 satisfies
∫
|x|η dP0(x) <∞, then we can

represent p0 as an infinite Gaussian mixture as in the first part of Assumption 1.
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Very few interesting densities do not have any absolute moments. Also, this does not place

restrictions on the smoothness class of the distributions. For instance, non-differentiable densities

can still have finite moments. It is a very weak tail condition.

Now, Assumption 1 does not impose any structure on the relationship between the p(xt | Ft−1)

over different time periods. The positive-definite assumption rules out perfect correlation between

the various components in the vector xt. Our results on the transition densities require the data

are sufficiently regular across time.

Assumption 2. There exists a latent state zt ∈ RN such that wt := (x′t, z
′
t)
′ is a countably-

generated geometrically ergodic Markov chain.6

Note, if the xt form a Markov sequence, then this holds automatically; we can take zt to

be a constant. In the following sections, we sometimes specialize to the case where the xt are

independent across t.

3 Sieve Construction

3.1 Setting up the Problem

We construct a sieve that approximates the wide variety of DGPs our paper considers. Given

the rescaled data X̃T , ε > 0, and δ ∈ (0, 1/2), we construct a discrete random operator that

takes a TD-dimensional hypersphere and maps it onto a KD-dimensional hypersphere, where

K � T . We show in Theorem 1 that this mapping only perturbs the norms of the individual

elements in X̃T by at most ε with high probability 1− 2δ.

We then show the joint densities across t = 1, . . . , T are also not perturbed significantly

in Theorem 2. This result holds whenever the value of the joint density function evaluated at

a datapoint is determined by the data’s norm. Since our random compression operator does

not perturb the norms of the individual data points significantly, the induced density after

compression is still close to the data’s true density. In other words, we link bounds on the

divergences between the norms to bounds on the divergences between the densities.

6For a sequence w ∈ W, let P denote the associated Markov kernel, π denote the associated stationary
distribution, and ‖·‖TV denote the total variation norm. Then P (w, ·) is a geometrically ergodic Markov chain if
for π-almost-everywhere w ∈ W there exists constants ρw < 1 and Cw <∞ such that ‖Pn(w, ·)−π(·)‖TV < Cwρ

n
w

for n ∈ N.
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Lastly, we approximate both the marginal density of XT in the space of densities over RD

and its conditional/transition density, which lies in the associated product space. Note, we are

interested in XT ’s marginal and transition density, not X̃ ′T s. We show that the difference between

the marginal densities is 1/T times the difference between the joint densities by exploiting the

product form of joint densities of independent or Markov data. Extending this argument, we

further show that the difference between the joint densities can be used to bound the difference

between the transition densities.

3.2 Bounding the Norm Perturbation

We compress the data with a random operator so that the induced distribution has a mixture

distribution. A mixture distribution can be treated as a random clustering of the data where

the data in each cluster has the same parametric distribution. For example, one can cluster

the data with K bins using a T ×K discretization operator where each row of the operator

contains exactly one 1 and the rest of the elements equal zero. A variable xt is in bin k if and

only if the operator has a 1 in row t and column k.

We first show that when the operator satisfies certain conditions, it preserves the norms of

the datapoints. This will be used to bound the divergence between densities.

Theorem 1 (Bounding the Norm Perturbation). Let X̃T be in the unit hypersphere in RTD−1.

Let ε > 0 and 0 < δ < 1/2 be given. Construct ΘT as a T ×KT operator comprised of each

element θt,k taking a value from {-1, 0, 1} such that 1) the rows of ΘT are i.i.d., 2) the columns

of ΘT form a martingale difference sequence, and 3) the number of columns KT of ΘT satisfies

KT > max
{

log(1/δ)
C1ε2

, log(T )
ε2

}
for some universal constant C1 with arbitrarily high probability.

Then with probability greater than 1− 2δ with respect to the randomness in ΘT , there exists a

universal constant C2 such that

sup
t

∣∣∣∣ 1

KT

KT∑
k=1

(
θk,t

D∑
d=1

xt,d

)2

− ‖xt‖2
L2

∣∣∣∣ < C2

(
1 + log

(
1

δ

))
ε.

Theorem 1 implies that when the number KT of ΘT ’s columns grows logarithmically with

T , applying ΘT perturbs the norms of x̃t by at most ε. This result holds with probability at

least 1− 2δ with respect to the distribution over ΘT . Since X̃T ∈ RTD−1, we can map RTD−1
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onto a smaller space RKTD−1, with KT � T , without perturbing the individual elements’ norms

significantly. This does not affect the mean or the variance. This increased randomness induced

by ΘT “smooths” the data.

Given a fixed ε > 0, a smaller value of δ makes the lower bound on KT larger. Hence, ΘT

must have more columns, i.e. clusters. Furthermore, the right hand side of the last inequality in

Theorem 1 is larger and the probability 1− 2δ is larger with a smaller value of δ. Conversely,

given a fixed δ > 0, a smaller value of ε makes the lower bound on KT larger but the right

hand side of the last inequality smaller. To summarize, the result’s dependence on tolerances ε

and δ leads to trade-offs between the number of clusters we need and the tightness of the last

inequality.

We now construct an explicit ΘT operator that satisfies the conditions in Theorem 1. This

ΘT operator differs in two ways from a standard discretization operator to make the columns of

ΘT be a martingale difference sequence. First, we let θt,k take on values from {−1, 0, 1}. Each

xt is in bin k if θt,k = 1 and in bin KT + k if θt,k = −1. If ΘT has KT columns, there are 2KT

possible clusters given that θt,k could be 1 or −1. Second, we let each row of ΘT have as many

1’s and −1’s as necessary. Then realizing 1 in column k does not change the distribution of

columns k + 1 through KT . In a standard discretization operator, once 1 realizes the remaining

columns in the row equal zero. This property makes the columns too dependent to form a

martingale difference sequence.

Definition 3 (ΘT Operator). Pick b ∈ (0, 1). Let ζ be a Bernoulli random variable with

Pr(ζ = 1) = b. Draw another random variable χ ∈ {−1, 1} with probability 1/2 each. Let

T ∈ N be given. Draw T variables χ · ζ for t = 1, . . . , T independently of all of the previous

values, and form them into a column-vector — Θ1. Form another column vector Θ2 the same

way and append it to the right of Θ1. Continue this process until all of the rows contain at least

one nonzero element. This constructs the ΘT operator.

The ΘT operator satisfies E[θt,k] = 0 and Var(θt,k) = E[|θt,k|] = Pr(ζ = 1). Since each row

of ΘT can have multiple nonzero elements, each datapoint may be in multiple components

simultaneously. In other words, we do not just create a mixture distribution across periods but

also create one in each period. In addition, ΘT is independent of X̃T . Since ΘT is discrete, ΘT

with KT columns implicitly clusters X̃T with 2KT possible clusters.
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To use ΘT in Theorem 1, it must satisfy the relevant conditions. Clearly, θt,k ∈ {−1, 0, 1}.

Also, ΘT ’s rows are independent and its columns form a martingale difference sequence. The

only dependence between the columns of ΘT arises through the stopping rule, and stopped

martingales are still martingales. Theorem 1 requires KT > max
{

log(1/δ)
C1ε2

, log T
ε2

}
holds with

arbitrarily high probability. Given fixed ε, δ the first number is a constant, so we need to satisfy

KT > log(T )/ε2 as T increases. By setting b = Pr(θt,k 6= 0) appropriately with respect to ε,

we could satisfy this lower bound.7 To wrap up, we constructed an operator ΘT that we rely

on extensively in the remainder of the paper. In particular, we relate this ΘT operator to the

Dirichlet process. This operator compresses the data by clustering X̃T . Since the number of

clusters KT grows logarithmically in T , this compression substantially reduces the complexity

in contrast to considering each of the T values of xt separately.

3.3 Distances on the Space of Densities

In the previous section, we showed that ΘT does not perturb the rescaled data x̃t’s norms

significantly. Our goal is to convert bounds on the sequence of norms of the data into bounds

on the densities, which requires us to decide on which distances to use on the space of densities.

We use the Hellinger distance and the supremum Hellinger distance.

Definition 4. (Hellinger Distance).

h2(p, q) :=
1

2

∫ (√
p(x)−

√
q(x)

)2

dx.

Definition 5 (Supremum Hellinger Distance).

h2
∞(p, q) := sup

FPt−1,F
Q
t−1, 1≤t≤T

h2
(
p
(
xt
∣∣FPt−1

)
, q
(
xt

∣∣∣FQt−1

))
.

The Hellinger distance is a valid norm on the space of densities. Instead of applying this to

joint densities, we take the supremum over the conditional densities. The supremum Hellinger

distance will prove useful because it is stronger than both the Hellinger distance and the

7Lemma 3, which is proven in the online appendix, shows that C1 log(T )
|log(1−b)| ≤ KT ≤ C2 log(T )

|log(1−b)| for some constants

C1, C2. If we choose b = 1− exp(−C1ε
2)), the lower bound of KT in Theorem 1 is satisfied.
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Kullback-Leibler divergence applied to joint densities. As a consequence, once we bound h∞, we

can directly deduce other bounds as necessary.

3.4 Representing the Joint Density

We now show that the approximating joint density of the rescaled data induced by ΘT is close to

the true joint density using h∞. Since ΘT is discrete, the approximating density denoted by q̃T

is a mixture of Gaussians. We rely on the properties of latent mixing measures to show that two

distributions q̃T and p̃T are close, even though they likely have different mixture components.

We do this by using techniques for controlling the behavior of latent random measures similar

to those developed in the literature, for example Nguyen (2016) and Guha et al. (2020).

We represent a mixture of Gaussians as an integral with respect to a latent mixing measure

— GQ
t — for each period t. The parameters in each component are means and covariances, and

so the GQ
t measure is over the space of means and covariances. Let GQ be the latent mixing

measure over the space of GQ
t . That is, each GQ

t is a draw from GQ. Let δQt denote the mixture

identity induced by ΘT . Let φ(· | δQt ) denote the multivariate Gaussian density with the mean

and the covariance associated with the δQt mixture. Then q̃T can be expressed as

q̃T (X̃ ) =

∫
G

∫
Gt

φ
(
x̃t

∣∣∣ δQt ) dGQ
t (δQt ) dGQ(dGQ

t ). (4)

Likewise, if we replace q with p, we write the true model’s density, p̃T , as

p̃T (X̃ ) =

∫
G

∫
Gt

φ
(
x̃t
∣∣ δPt ) dGP

t (δPt ) dGP
(
dGP

t

)
, (5)

with its associated latent mixing measures and mixture identities. Note the approximating

cluster identities {δQt }Tt=1 are different from the true cluster identities {δPt }Tt=1, because ΘT

induces Q’s clustering. It is not induced by the underlying true clustering.8

Theorem 1 shows that ΘT does not perturb the norms of the rescaled data significantly with

high probability. Hence, under the context of a mixture of Gaussians, (x̃t− µ̃Pt )′(Σ̃P
t )−1(x̃t− µ̃Pt )

and (x̃t− µ̃Qt )′(Σ̃Q
t )−1(x̃t− µ̃Qt ) are close with µ̃Pt := E[x̃t | δPt ], Σ̃P

t := Cov[x̃t | δPt ], µ̃Qt = E[x̃t | δQt ],

8Equations (4) and (5) are immediate consequences of Definition 1 and Definition 2 applied to the rescaled
data because we can create hierarchies of the Gt by expanding the probability space.
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and Σ̃Q
t = Cov[x̃t | δQt ]. Since this holds for all x̃t and (x̃t − µ̃Pt )′(Σ̃P

t )−1(x̃t − µ̃Pt ) determines the

value of φ
(
x̃t
∣∣ δPt ), the densities p̃T and q̃T are close. This lets us convert bounds on divergences

in the space of X̃T — X̃ — to bound on divergences in the space of densities.

Theorem 2 (Representing the Joint Density). Let X̃T := XT−µT
‖XT−µT ‖L2

where XT satisfies As-

sumption 1. Let ε > 0 and δ ∈ (0, 1/2) be given. Construct the random operator ΘT using the

procedure in Definition 3. Let p̃T denote the density of X̃T . Then the approximating density q̃T ,

which is the mixture of Gaussians over X̃ that ΘT induces, satisfies the following with probability

at least 1− 2δ with respect to ΘT for some universal constant C:

h2
∞

(
p̃T (X̃ ), q̃T (X̃ )

)
< C

(
1 + log

(
1

δ

))2

ε2.

We represent the joint density as follows. Unlike previous compression operators in the

literature, ΘT is discrete; hence, it clusters x̃t. This property implies that the density of x̃t is

a process with respect to a discrete measure. That is, Q̃T is a mixture distribution. Also, we

show in Section 3.6, that we can assume that this latent measure is Dirichlet without loss of

generality. In other words, we can represent X̃T using a Gaussian mixture process whose latent

mixing measure is a Dirichlet process.

The remaining issue is that Theorem 2 bounds the rescaled data X̃T , not XT . Since X̃T is

rescaled with the square root of the sum of the squares over T periods and Theorem 2 is based

on Theorem 1 about the data’s norm, the bound from Theorem 2 is of the order Tε2 when

applied to XT . As T is increasing, this bound is not useful. In Section 3.5, we estimate XT ’s

transition density. We exploit the joint distributions’ product structure implied by Assumption 2

to remove this T term in the bound.

3.5 Representing the Transition Density

We now show our model approximates transition densities well. The intuition behind the proof

is as follows. Theorem 2 implies that Tε2 bounds the maximum deviation of the approximating

joint density from the true density. Since the data are Markov, we construct the sample transition

density as an average of the transitions in the data. This represents the joint distribution as a

product of conditional densities. Thus the deviation of joint densities is the proportional to the
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sum of deviations of transition densities over T periods. Hence, we can use the bound for joint

densities divided by T to bound the divergence of transition densities.

Theorem 3 (Transition Density Representation). Let XT satisfy Assumption 1 and Assump-

tion 2. Let pT denote the true density. Let ε > 0 and δ ∈ (0, 1/2) be given. Let ΘT be constructed

as in Definition 3. Let KT be C1(number of columns of ΘT )2 for some constant C1. Let δt be

the cluster identity at time t. Then there exists a mixture density qT with KT clusters with the

following form:

qT (xt |xt−1, δt−1) :=

KT∑
k=1

φ (xt | βkxt−1,Σk) Pr (δt = k | δt−1) .

Construct qT

(
xt

∣∣∣FQt−1

)
from qT (xt |xt−1, δt−1) by integrating out δt−1 using Pr(δt−1 |XT ).

Then with probability 1− 2δ with respect to ΘT , there exists a universal constant C2 such that

the following holds uniformly:

h2
∞

(
pT
(
xt
∣∣FPt−1

)
, qT

(
xt

∣∣∣FQt−1

))
< C2

(
1 + log

(
1

δ

))2

ε2.

3.6 Replacing ΘT with a Dirichlet Process

The previous subsections use ΘT to construct an approximating representation that is arbitrarily

close to the truth. We want to construct an estimator that takes this representation to the data.

(We do not claim that the representation is unique.) Here we argue that ΘT can be chosen to

be a Dirichlet process without loss of generality.

Consider the ΘT process as in Definition 3 except we no longer stop when we no longer need

columns. Then we can replace ΘT with a Dirichlet process without altering the results. By

doing this we can use standard Dirichlet-based samplers to estimate the sieve. In particular, the

nonparametric Bayesian marginal density estimators in the literature satisfy the requirements

of our theory (Ghosal et al., 2000; Walker, 2007).

Lemma 1 (Replacing ΘT with a Dirichlet Process). Let QT be a mixture distribution repre-

sentable as an integral with respect to the ΘT process defined in Definition 3. Then QT has a

mixture representation as an integral with respect to the Dirichlet process.
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The intuition behind Lemma 1 is as follows. Both the ΘT process and the Dirichlet process

are based on the Chinese restaurant problem (seating customers at tables in a Chinese restaurant

with an infinite number of circular tables). Since they have almost identical structure, we can

replace ΘT with the Dirichlet process without affecting our theoretical results.

4 Bayesian Nonparametrics and Convergence Rates

4.1 Problem Setup

We use the bounds constructed in the previous section to derive the convergence rates of the

associated density estimators. We adopt the standard Bayesian nonparametric framework and

show how fast the posteriors contract to the truth. Our definition of posterior contraction rate

comes from (Ghosal and van der Vaart, 2017, Theorem 8.2). We assume the data XT are drawn

from some distribution PT which is parameterized PT (· | ξ), for ξ ∈ Ξ.

Definition 6. (Contraction Rate) A sequence εT is a posterior contraction rate at parameter

ξP with respect to the semimetric d if QT
(
{ξ
∣∣ d(ξP , ξ) ≥MT εT}

∣∣XT

)
→ 0 in PT

(
XT

∣∣ ξP )-
probability for every MT →∞.

To bound the asymptotic behavior of εT , we must simultaneously bound two separate

quantities. First, we must show that our approximating density is close to the true density in

terms of the appropriate distance. We did this in the previous section. Second, we must bound

the complexity (entropy) of our model, showing that it does not grow too rapidly.

We start by defining some notation that we use in deriving our theorems for the contraction

rates. The concepts we use here are standard in the Bayesian nonparametrics literature. First,

we define the metric (Kolmogorov) entropy for some small distance ε, some set Ξ, and some

semimetrics, dT and eT . (One can use the same semimetric for both dT and eT .)

Definition 7. (Metric Entropy). N(Cε, {ξ ∈ ΞT |dT (ξ, ξP ) ≤ ε}, eT ) is the function whose value

at ε > 0 is the minimum number of balls of radius Cε with respect to the dT semimetric (i.e.,

dT -balls of radius Cε) needed to cover an eT -ball of radius ε around the true parameter ξP . The

logarithm of N(Cε, {ξ ∈ ΞT |dT (ξ, ξP ) ≤ ε}, eT ) is metric entropy.
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The metric entropy is the relevant measure of the model’s complexity, and hence the “size”

of the sieve. In the following sections, we show our model satisfies the conditions required to

apply (Ghosal and van der Vaart, 2007a, Theorem 1). This theorem provides general conditions

for convergence of posterior distributions even if the data are not i.i.d.9

4.2 Contraction Rates

Given the existence of uniformly consistent tests, we show the remaining conditions for (Ghosal

and van der Vaart, 2007a, Theorem 1) hold by proving Proposition 4 and deriving the marginal

and transition densities as special cases of it.

Proposition 4 (Bounding the Posterior Divergence). Let XT satisfy Assumption 1 and As-

sumption 2. Let pT :=
∑

k Πk,tφ(xt |µt,Σt) denote the true density. Let ΞT ⊂ Ξ and T → ∞.

Let qT be a mixture approximation with Ki
T = log(T )i

η2T
components for i ∈ {1, 2}. Assume the

following condition holds with probability 1− 2δ for δ ∈ (0, 1/2), and constant C:

sup
t
h
(
pT
(
xt
∣∣FPt−1

)
, qT

(
xt

∣∣∣FQt−1

))
< CηT .

Let εT :=
√

log(T )
T

. Then there exist constants C2 and C3 such that the following two conditions

hold with probability 1− 2δ:

sup
εi≥εT

logN
(
C2εi,

{
ξ ∈ ΞT

∣∣h∞(ξ, ξP ) ≤ εi
}
, h∞

)
≤ Tε2T ,

and

QT
(
BT

(
ξP , εT , 2

) ∣∣XT

)
≥ exp

(
−C3Tε

2
T

)
.

where BT

(
ξP , εT , 2

)
is a εT -ball with respect to the divergence measure as in Ghosal and van

der Vaart (2007a).

By taking i = 2, we can apply Proposition 4 to the transition density whose representation

is in Theorem 3. As a consequence, the following result holds for the transition density.

9We show that uniformly consistent tests exist with respect to the semimetric we use: h∞ in Lemma 8 in the
online appendix.
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Theorem 5 (Contraction Rate of the Transition Density). Let XT satisfy Assumption 1 and

Assumption 2. Denote its density pT :=
∑

k Πt,kφ(xt |µt,Σt). Let T → ∞, then the following

holds with εT :=
√

log(T )
T

with probability 1−2δ, δ ∈ (0, 1/2) with respect to the prior: There exists

a constant C independent of T such that the posterior over the transition densities constructed

as in Theorem 3 and the true transition density satisfies

PT

(
QT

(
sup

FPt−1,F
Q
t−1

h
(
pT
(
xt
∣∣FPt−1

)
, qT

(
xt

∣∣∣FQt−1

))
≥ CεT

∣∣∣∣∣XT

))
→ 0.

The constant C in Theorem 5 implicitly depends on a given δ as shown in Theorem 3.

Estimating the Markov transition density with respect to h∞ is more difficult than estimating

the marginal density. A similar argument shows that Proposition 4 implies the following result

for the marginal density by taking i = 1.

5 Estimation Strategy

The previous section focused on theoretical results. This section develops a Bayesian Gibbs

sampler for our model. Algorithm 1 summarizes the steps. Recall the definition of the

approximating model for the transition density:

qT (xt | Ft−1) =

KT∑
k=1

Π (δt = k | δt−1)φ (xt | βkxt−1,Σk) .

We must place a prior on each of the components δt in this model. We start by placing a Dirichlet

process prior on Πt,k := Π(δt = k | δt−1) and, hence, implicitly on KT . We then construct priors

for βk and Σk. A substantial literature exists on efficiently estimating Dirichlet mixture models

(Ishwaran and James, 2001; Papaspiliopoulos and Roberts, 2008; Griffin and Walker, 2011). We

use the slice sampler of Walker (2007) to handle the potentially infinite number of mixtures

and compute a valid upper bound for KT . Conditional on KT , we draw the {δt}Tt=1 from their

marginal distributions. We update the transition matrix Π so it has the correct marginal

distributions. Given δt = k, we apply standard Bayesian regression methods to obtain posterior

draws on βk and Σk. In addition, we use a conditionally conjugate hierarchical prior and draw

from the hyperparameters’ posterior.
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Algorithm 1 Gibbs Sampler

1. Posterior of {δt}Tt=1

(a) Use Walker (2007) to determine the number of mixtures (clusters) KT .

(b) Update the marginal probabilities for {δt}Tt=1, and the transition matrix, Π.

(c) Given KT and {xt}Tt=1, use multinomial sampling to draw δt with

Pr(δt = k|xt,Πt,k, βk,Σk) ∝ φ (xt | βkxt−1,Σk) Πt,k.

2. Posterior of Π

(a) Obtain the posterior of Π conditional on {δt}Tt=1 where the (j, k) element of Π is

Q0(δt−1 = j)Q0(δt = k) +
∑T

t=2 1(δt−1 = j)1(δt = k)

Q0(δt−1 = j) +
∑T

t=2 1(δt−1 = j)
.

Recall that Q0 denotes the Dirichlet prior distribution.

3. Posterior of Component-Specific Parameters

(a) Given each cluster k, conduct a Bayesian regression to draw {βk,Σk}.

4. Posterior of Hyperparameters

(a) Draw the hyperparameters governing {βk,Σk} from their conjugate posteriors.

5. Iterate

5.1 Posterior of {δt}Tt=1

5.1.1 Bounding KT

Our problem takes the same form as estimating a mixture model does in an i.i.d. context except

our mixture identities have time-varying dynamics. We adapt the algorithm developed by Walker

(2007) to our context and obtain the marginal mixture probabilities πk.
10

πk = vk

k∏
κ=1

(1− vκ)

where vk are distributed

10More details on this algorithm is described in the online appendix.



18

vk ∼ Beta

(
1 +

T∑
t=1

1(δt = k), T −
k∑

κ=1

T∑
t=1

1(δt = κ) + α

)
for k = 0, 1, . . . and α > 0.

5.1.2 Correcting Π to have the Correct Marginal Distribution

We must construct a transition matrix where the relationship between two clusters, k and k∗,

remains the same as they did in the previous draw of the sampler, but the marginal distribution is

updated appropriately. We know that Markov transition matrices and their associated marginal

distributions have the following relationship for each cluster k:11

πk =
∞∑
j=1

Πj,kπj.

Let π̃ be a new marginal distribution that is equivalent (in the measure-theoretic sense) to π.

Define a transition matrix Π̃ whose elements satisfy Π̃j,k = Πj,k
π̃k
πk

πj
π̃j

. The matrix Π̃ induces the

correct marginal distributions because it satisfies

π̃k = πk
π̃k
πk

=
∞∑
j=1

Πj,kπj
π̃k
πk

=
∞∑
j=1

Πj,k
π̃k
πk

πj
π̃j
π̃j =

∞∑
j=1

Π̃j,kπ̃j.

5.1.3 Conditionally Drawing the {δt}Tt=1

If the new distribution π̃ has more clusters than the previous draw π did, we use the prior.

From Π̃, we compute Πt,k for each t by drawing the first cluster identity, δ0, from its stationary

distribution and then using the Markov property of δt−1 for t > 1 to iterate forward. Then the

posterior of δt satisfies

Pr (δt = k |xt,Πt,k, βk,Σk) ∝ φ (xt | βkxt−1,Σk) Πt,k.

Hence, categorical variables δt can be sampled directly with known probabilities.

11This condition holding for all k is the standard condition that a stationary distribution is a left-eigenvector
of the transition matrix.
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5.2 Posterior on the Transition Matrix

We place the Dirichlet process prior on these cluster identities in each period to allow for an

arbitrary number of clusters. By stacking the Dirichlet processes over time, we obtain a Dirichlet

process over the (δt−1, δt) product space. Intuitively, we are constructing the transition matrix,

Π, as a Dirichlet-distributed infinite-dimensional square matrix as noted by Lin et al. (2010).

Given the cluster identities {δt}Tt=1 which we drew in Section 5.1, we obtain the posterior on

the transition matrices by counting the proportion of realized transitions and combining it with

the prior probability of each transition.

Πj,k =
Q0(δt−1 = j)Q0(δt = k) +

∑T
t=2 1(δt−1 = j)1(δt = k)

Q0(δt−1 = j) +
∑T

t=2 1(δt−1 = j)
.

Each element, Πj,k, determines the probability of transitions in (δt−1, δt) and is updated by

counting the number of transitions from j to k.

5.3 Posterior for the Coefficient Parameters

Definition 8 gives the mixture component-specific likelihood where Xk := {xt−1 | δt−1 = k},

Yk := {xt | δt = k}, and Tk is the number of datapoints in cluster k.

Definition 8. Component-Specific Likelihood

{xt}Tt=1 | {δt}Tt=1, {βk,Σk}Kk=1 ∼
K∏
k=1

|Σk|−Tk/2

(2π)Tk/2
exp

(
−1

2
tr
{

Σ−1
k (Yk −Xkβk) (Yk −Xkβk)

′}) ,
We estimate these parameters using component-by-component Bayesian regression. Each

mixture component has varying amounts of data. When the forecast generates a new mixture

component, we cannot condition on the data in that component. There is none. Consequently,

we specify a hierarchical model to pool information across components. Hence, our model is

component-by-component Bayesian regression with a conjugate Gaussian Inverse-Wishart prior

generalized to allow for a hierarchical structure over the regression parameters.
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Definition 9. Component-Specific Parameters’ Prior

{βk}Kk=1 |Σk, β̄, U ∼MN
(
β̄,Σk, U

)
{Σk}Kk=1 |Ω ∼ W−1 ((µ1 − 2)Ω, µ1 +D − 1)

where MN stands for matrix normal distribution and W−1 for Inverse-Wishart distribution.

This prior is the conjugate prior for the likelihood in Definition 8, and so we can use the

standard formulas to estimate component-specific parameters. Derivations on their posteriors are

provided in the online appendix. We now specify the hyperparameters’ prior. As we did above,

we place a conjugate matrix-normal prior on the coefficient matrix and an Inverse-Wishart prior

on the covariance matrix.

Definition 10. Coefficient Hyperparameters’ Prior

β̄, U ∼MN (β†, ID, U)W−1(ΨU , νU)

We adapt the hierarchical prior for Ω := E[Σk] from Huang and Wand (2013). We have two

degree of freedom parameters, µ1 and µ2, and D scale parameters for Ω: a1, . . . , aD. Given these

prior specifications, we derive the posteriors in a fairly standard way in the online appendix.

Definition 11 (Prior for the Covariances).

Ω ∼ W
(

diag(a1, . . . , aD)

µ2 +D − 1
, µ2 +D − 1

)

6 Simulation

6.1 Data

We analyze how our estimator works when we know what the true data generating process

(DGP) is. The DGP we consider is a vector autoregressive model with the Student’s t-distributed

innovations.12 The Student’s t-distribution is an infinite mixture of normal distributions where

12We also conducted simulation exercises with other specifications. These results are available upon request.
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the variance is inverse-gamma distributed. The degrees of freedom for t-distributed innovations,

which govern the fat-tailedness, is set to 5.7 as in Brunnermeier et al. (2019). Our DGP of

bivariate (D = 2) data xt is as follows:

xt = Φ0 + Φ1(xt−1 − Φ0) + Σ1/2εt

Φ0 =

0.2

0.1

 , Φ1 =

0.6 −0.1

0.0 0.9

 , Σ1/2 =

0.3 0.0

0.2 0.3

 , εit ∼i.i.d. t(5.7)

6.2 Prior

As stated in Table 1, the prior for the mixture component coefficients has a Kronecker structure

where we specify beliefs over the relationship between regressands and regressors separately.

Table 1: Prior

Degrees of freedom for the hierarchical prior 5
Expected number of mixture components 5

Component Coefficients

Intercept 0
Expected diagonal autocorrelation 0.9
Expected off-diagonal autocorrelation 0

Component Covariances

Mean .252ID
µ1 3
µ2 3

The prior we use for the component parameters and base Dirichlet measure is rather flat,

which means that we are not imposing a great deal of a priori structure. Lastly, although we do

not have an explicit step in merging similar clusters in our sampler, our hierarchical prior will

reduce separation between two similar clusters.

6.3 Simulation Results

We consider the data generating process of VAR(1) with the Student’s t-distributed innovations.

Figure 1 shows the in-sample predictive posterior density of xt given xt−1. The colored intervals

show the credible sets based on posterior draws with the labeled percentages. The red line
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shows the true xt. The black solid line is the posterior median. We can see that the posterior

transition density closely captures the true dynamics of xt.

Figure 1: One-period Ahead Density Forecasts
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The first row of Figure 2 shows the probability integral transition (PIT) histograms. The

PIT is the cumulative density of the random variable xT+1 evaluated at the true realization.

The second row of Figure 2 shows the PIT autocorrelation functions (ACF). If the predictive

distribution is correctly conditionally calibrated, the PIT histogram should be distributed as

Uniform[0,1] and ACF should not show any serial dependence. The shaded area around the

ACF is the credible set drawn using Barlett’s formula. Based on Figure 2, our one-period ahead

predictive density is correctly conditionally calibrated.

Figure 2: PIT Histogram and Autocorrelation Function (ACF)
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We can see from Figure 3 that we use more clusters as time progresses. Since the Student’s
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t-distribution has fatter tails than the normal distribution, we use at least three clusters in all

of the periods. The rate at which the number of clusters increases is approximately logarithmic

in the posterior, not just the prior, as predicted by our theory. In addition, when there arises a

more complex dynamics compared to the past, our procedure is likely to add more clusters to

approximate this dynamics. In Figure 3, we can see some spikes in the number of clusters over

time. The blue solid line inside the green band stands for the median number of active clusters,

which fluctuates between 5 and 12.

Figure 3: Number of Clusters Over Time
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Figure 4: Time-varying Moments from One-period Ahead Density Forecasts
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1996 1997 1998 1999 2000 2001 2002 2003 2004

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Var1
Var2

(d) Kurtosis

1996 1997 1998 1999 2000 2001 2002 2003 2004

10

20

30

40

50

Var1
Var2



24

7 Empirical Analysis

7.1 Data and Prior

We downloaded monthly data on real consumption (DPCERAM1M225NBEA), personal con-

sumption expenditure price index (PCEPI), industrial production (INDPRO), housing supply

(MSACSR), unemployment rate (UNRATE), and 10-year government bond yields (IRLTLT01USM156N)

from the Federal Reserve Bank of Saint Louis economic database (FRED). All of the data are

seasonally-adjusted by FRED. We convert to approximate percent changes by log-differencing all

of the data except for the consumption measure, which is already measured in percent changes,

the unemployment rate, and the long-term interest rate. We then demean the data and rescale

them so they have standard deviations equal to 1. This is useful because it puts all of the data

on the same scale. The data are from January 1963 to December 2018. The time dimension is

671, and the cross-sectional dimension is 6.

We use the prior as in Table 1, which is also used in our simulation. This prior specification

does not impose too much structure a priori. Specifically, we do not impose how many clusters

are necessary to approximate the evolution of densities. To the extent the simulation analysis

and the empirical analysis require different numbers of clusters, this reflects different complexities

in the datasets’ dynamics.

7.2 Dynamics of Monthly Consumption Expenditure

To show that our algorithm works reasonably well in practice, we display the conditional density

forecast for consumption in Figure 5. The online appendix provides predictive densities, PIT

histograms, and ACFs for the other macroeconomic series. If the model works perfectly, the

probability integral transform should be independent and distributed Uniform[0, 1]. As we can

see, it is roughly independent and distributed approximately uniform.

The dynamics of the data in Figure 5a are not obviously non-Gaussian or non-linear. One

may question whether we are effectively just estimating a simple VAR. We show that this is

not the case by Figure 6. Figure 6a illustrates that the conditional variance spikes a great

deal in recessions when we compute the rolling averages over 1 year. Similar to Schorfheide
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Figure 5: One-Period Ahead Conditional Forecasts: Consumption Expenditure
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(b) PIT Histogram
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et al. (2018), we find stochastic volatility for consumption growth at business cycle frequencies

using purely macroeconomic data. A VAR(1) could not capture this. We also find interesting

results regarding higher moments of consumption. Skewness (Figure 6b) and kurtosis (Figure 6c)

exhibit significant time-variation. Interestingly, skewness appears to decrease and kurtosis to

increase during the shaded NBER recessions.

Figure 6: Consumption Variability
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One may wonder how our model differs from a regime-switching model, which is quite popular

in the literature. Our nonparametric approach uses an endogenously determined number of

components to approximate the recession regime, instead of using just one as standard regime-

switching models do. We use multiple clusters because our clusters serve two purposes. They let

the mean change, as they do in regime-switching models, but they also model non-Gaussianity.

We find that the data are substantially less Gaussian during recessions, and this increase

in the distributional complexity with time-varying higher moments holds for all the series

considered. This finding aligns with the recent literature in macroeconomics and finance. For

instance, Guvenen et al. (2014) point out that the left-skewness of income risk is counter-cyclical.

That is, income shocks become more risky during recessions. Furthermore, the evolution of
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kurtosis shows that the consumption density becomes more fat-tailed in recessions. Disaster

models such as Barro and Jin (2011) and Tsai and Wachter (2016) predict that kurtosis should

either always be high (not approximately 3) or increase substantially during disasters.

8 Conclusion

We construct a Bayesian nonparametric density estimator that, with high probability, converges

fast for a large, fixed number of series. We devise a discrete random compression operator that

induces a Dirichlet Gaussian mixture model to approximate a wide variety of densities. Based

on this model, we provide a computationally efficient Gibbs sampler to estimate marginal and

transition densities of multivariate processes.

We provide new theory that shows the posterior distributions of our density estimators

converge more rapidly, with arbitrarily high probability with respect to random compression,

than the literature has yet achieved. We show our estimators for the marginal and transition

densities converge at a
√

log(T )/T rate with high probability.

We show that our estimators perform well in simulations and when applied to macroeconomic

data. Our empirical analysis shows that macroeconomic data’s dynamics are often far from

Gaussian and change over the business cycle.
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Feasible Multivariate Density Estimation

Using Random Compression: Online Appendix

Online Appendix A Measure Concentration

A.1 Generic Chaining

We start by recalling a few definitions and fixing some notation. Recall the definition of a
γ-functional:

γα(X , d) = inf sup
x∈X

∞∑
s=0

2s/αd(s,Xs),

where the infimum is taken with respect to all subsets Xs ⊂ X ⊂ RT×D such that the cardinality
|Xs| ≤ 22s, |X0| = 1, and d is a metric. This γ2(X , d) functional is useful because it controls the
expected size of a Gaussian process by the majorizing measures theorem (Talagrand, 1996).

Recall the definition of the Orlicz norm of order n: ψn := inf{C > 0|E
[
exp

(
|X|n
Cn

)
− 1
]
≤ 1}.

This is useful because a standard argument shows that if X has a bounded ψn norm then the

tail of X decays faster than 2 exp
(
− xn

‖x‖nψn

)
. Hence, if x has a finite ψ2-norm, it is subgaussian.

A.2 Properties of the ΘT -operator

Lemma 2. Let KT be the number of columns of ΘT as defined in Definition 3. Then its
probability density function has the following form, where b := Pr(ζ = 1).

Pr(KT ≤ K̃) =
(

1− (1− b)K̃
)T

Proof. Let θt denote a row of ΘT . Then

Pr(K ≤ K̃) = Pr(θt includes 1 or -1 for all t = 1, . . . , T ) = (Pr(θt includes 1 or -1))T

= (1− Pr(θt only includes 0’s))T =
(

1− (1− b)K̃
)T

.

Lemma 3. Let KT be the number of columns of ΘT as defined in Definition 3, with Pr(θt,k 6=
0) = b. Then for any γ ∈ (0, 1) there exist constants C1 and C2:

C1 log(T )

|log(1− b)|
≤ KT ≤

C2 log(T )

|log(1− b)|
.

Proof. We set the cumulative distribution function equal to 1 − γ, i.e. the survival function
equal to γ:

(1− γ) = (1− (1− b)KT )T =⇒ log(1− γ)/T = log(1− (1− b)KT ). (6)
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By Taylor’s theorem there exist constant C3, C4 such that

−C3(1− b)KT ≤ log(1− γ)

T
≤ −C4(1− b)KT .

C4(1− b)KT ≤ − log(1− γ)

T
≤ C3(1− b)KT

Taking logs and multiplying through by −1:

− logC3 −KT log(1− b) ≤ log(T )− log(− log(1− γ)) ≤ − logC4 −KT log(1− b)

−KT log(1− b) + log(− log(1− γ)/C3) ≤ log(T ) ≤ −KT log(1− b) + log(− log(1− γ)/C4) (7)

Consider the lower bound in (7), if log(− log(1− γ)/C3) ≥ 0, we can just drop it. So assume
without loss of generality that log(− log(1 − γ)/C3) < 0. Note (6) implies −KT log(1 − b) ≥
− log(γ). Hence, we get log(− log(1−γ)/C3)

−KT log(1−b) ≥ log(− log(1−γ)/C3)
− log(γ)

. Then the left-hand side of (7) is

bounded by −KT log(1− b)
(

1 + log(− log(1−γ)/C3)
− log(γ)

)
.

Consider the upper bound in (7), if log(− log(1− γ)/C4) < 0, we can just drop it. Assume
without loss of generality that it is positive. Then the right-hand side of (7) is bounded by

−KT log(1− b)
(

1 + log(− log(1−γ)/C4)
− log(γ)

)
.

That is, there exist positive constants C5, C6 independent of b, KT , and T such that

C5KT |log(1− b)| ≤ log(T ) ≤ C6KT |log(1− b)|.

Rearranging,
1

C6|log(1− b)|
log(T ) ≤ KT ≤

1

C5|log(1− b)|
log(T ). (8)

A.3 Relationship between the Orlicz and L2 norms.

We use the following lemma in our proof of Theorem 1. We need it to bound the tail deviations
using a bound on the 2nd moment deviations.

Lemma 4. Let Θ be an operator comprised of draws θt,k take from {-1, 0, 1} that the rows of
ΘT are i.i.d. and the columns of ΘT form a martingale difference sequence. Let b ∈ (0, 1) denote
Pr(θt,k 6= 0). Let {xt}Tt=1 be a sequence of known random vectors of length D. Then we have the
following.

1. The squared L2-norm of x is equivalent to E [〈Θk, x〉2].

2. The squared L2-norm of x, ‖x‖2
L2

dominates the 2nd-order Orlicz norm.

Proof. First, we start by showing Item 1. Let Θk denote a column of the matrix. The root of
the proof follows from realizing that ΘT is a generalized selection matrix, and covariances are
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dominated by variances:

EΘ [X ′ΘkΘ
′
kX] = EΘ

[
T∑
t=1

xtθt,kθt,kx
′
t

]
= EΘk

[
T∑
t=1

|θt,k|xtx′t

]
= b

T∑
t=1

xtx
′
t,

where the last line follows by the independence of the rows of Θk.
Consider EΘ [X ′ΘΘ′X]. Since the columns of ΘT are a martingale difference sequence,

variances of sums are sums of variances:

EΘ [X ′ΘΘ′X] =
K∑
k=1

EΘk [X ′ΘkΘ
′
kX] = bK

T∑
t=1

xtx
′
t.

Now that we have shown Item 1, we must show that L2-norm dominates the ψ2-norm. This is
useful because it implies that if we can control the variance of the distribution, we automatically
control the tails as well:

inf

{
C > 0

∣∣∣∣∣E
[

exp

(
|〈Θk, x〉|2

C2

)]
− 1 ≤ 1

}

= inf

{
C > 0

∣∣∣∣∣E
[

exp

(∑T
t=1|θt,k|x′txt + 2

∑
t,τ 6=t θt,kθτ,kx

′
txτ

C2

)]
≤ 2

}
.

Since the cross-terms are proportional to squares, and the Θk are generalized selection vectors
this bounded by

inf

{
C > 0

∣∣∣∣∣E
[

exp

(
2
∑T

t=1|θt,k|x′txt
C2

)]
≤ 2

}
.

By the definition of the exponential function, |θt,k| ∈ {0, 1}, and the multinomial theorem, this
equals

inf

C > 0

∣∣∣∣∣∣∣E
 ∞∑
h=0

2h
(∑T

t=1|θt,k|x′txt
)h

C2hh!

 ≤ 2


= inf

{
C > 0

∣∣∣∣∣E
[
∞∑
h=0

2h
∑∑

kt=h

(
h

k1,k2,...kT

)∏T
t=1|θt,k|(x′txt)kt

C2hh!

]
≤ 2

}
.

Since everything is absolutely convergent, we can interchange expectations and infinite sums,
and so this equals

inf

{
C > 0

∣∣∣∣∣
∞∑
h=0

2h
∑∑

kt=h

(
h

k1,k2,...,kT

)∏T
t=1 b(x

′
txt)

kt

C2hh!
≤ 2

}
.

Then we can use the multinomial theorem and the formula for the exponential function in the
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reverse direction, implying this equals

inf

{
C > 0

∣∣∣∣∣ b exp

(
2‖x‖2

L2

C2

)
≤ 2

}
= inf

{
C > 0

∣∣∣∣∣ 2‖x‖2
L2

C2
= log (2/b)

}
≤
√

2‖x‖L2√
log (2)

,

where the last inequality follows because b < 1. Hence, we have that the L2-norm dominates
the ψ2-norm.

A.4 Norm Equivalence

In the section below we reproduce (Klartag and Mendelson, 2005, Prososition 2.2). The one
change that we make is that we spell out one of the constants as a function of its arguments.

Proposition 6 (Klartag and Mendelson (2005) Proposition 2.2). Let (X , d) be a metric space
and let {Zx}x∈X be a stochastic process. Let K > 0,Υ : [0,∞)→ R and set Wx := Υ(|Zx|) and

ε := γ2(X ,d)√
K

. Assume that for some η > 0 and exp (−c1(η)K) < δ < 1
4
, the following hold.

1. For any x, y ∈ X and u < δ0 := 4
η

log 1
δ
,

Pr (|Zx − Zy| > ud(x, y)) < exp

(
− η
δ0

Ku2

)
2. For any x, y ∈ X and u > 1

Pr (|Wx −Wy| > ud(x, y)) < exp
(
−ηKu2

)
3. For any x ∈ X , with probability larger than 1− δ, |Zx| < ε.

4. Υ is increasing, differentiable at zero and Υ′(0) > 0.

Then, with probability larger than 1− 2δ, with C(Υ, δ, η) :=
(
c(Υ)c(η)( 2

η
(log 1

δ
+ 1))

)
> 0,

where both c(Υ) and c(η) depend solely on their arguments.

sup
x∈X
|Zx| < C(Υ, δ, η)ε.

Here we quote a version of Bernstein’s inequality for martingales due to (de la Peña, 1999,
Theorem 1.2A), which we use later.

Theorem 7 (Bernstein’s Inequality for Martingales). Let {xi,Fi} be a martingale difference
sequence with E [xi | Fi−1] = 0,E [x2

i | Fi−1] = σ2
i , vk =

∑k
i=1 σ

2
i . Furthermore, assume that

E [|xi|n | Fi−1] ≤ n!
2
σ2
iM

n−2 almost everywhere. Then, for all x, y > 0,

Pr

({∣∣∣∣∣
k∑
i=1

xi

∣∣∣∣∣ ≥ u, vk ≤ y for some k

})
≥ 2 exp

(
− u2

2(y + uM)

)
.
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If we choose c small enough, this implies

Pr

({∣∣∣∣∣1k
k∑
i=1

xi

∣∣∣∣∣ ≥ u, vk ≤ y for some k

})
≥ 2 exp

(
−cmin

{
u2k2

v
,
uk

M

})
.

A.5 Bounding the Norm Perturbation (Theorem 1)

Proof. We mimic the proof of (Klartag and Mendelson, 2005, Theorem 3.1), verifying the
conditions of Proposition 6. Similar to them we use Υ(t) :=

√
1− t. Our conclusion is stated

in terms of the logarithm of the sample size — T. This conclusion is weaker than theirs as

γ2

(
X̃ , ‖·‖L2

)
< C

√
log(T ). We can see this by combining the majorizing measure theorem

(Talagrand, 2014, Theorem 2.4.1), and the minoration theorem (Talagrand, 2014, Lemma 2.4.2).
We start by fixing some notation. Let x, y ∈ X . We use the functional notation x(θk) to

refer
∑D

d=1 θ
′
kxd.

ZK
x :=

1

K

K∑
k=1

x2(θk)− ‖x‖2
L2

Consider ZK
x − ZK

y .

ZK
x − ZK

y =
1

K

K∑
k=1

x2(θk)− y2(θk) =
1

K

K∑
k=1

(x− y)(θk)(x+ y)(θk)

Let Yk := x2(θk)− y2(θk), then

Pr(|Yk| > 4u‖x− y‖ψ2
‖x+ y‖ψ2

)

≤ Pr(|x(θk)− y(θk)| > 2
√
u‖x− y‖ψ2

) + Pr(|x(θk) + y(θk)| > 2
√
u‖x+ y‖ψ2

)

≤ 2 exp(−u),

where the last inequality comes from the sub-exponential tails of θt,k and the first by the union
bound. This implies that ‖Yk‖ψ1

≤ c1‖x− y‖ψ2
‖x+ y‖ψ2

≤ c2‖x− y‖ψ2
. We do not need the β

used by Klartag and Mendelson because the entries in our Θ operator are uniformly bounded
by 1 in absolute value.

The Yk are a martingale difference sequence, and so we can apply Theorem 7. They are a
martingale difference sequences because the expectation in the next period is either the current
value because the increments are mean zero if the sum does not stop or identically zero if
they do. If we set v = 4K‖Yk‖2

ψ1
we can use Bernstein’s inequality for martingales mentioned

above.
∑K

k=1 σ
2
k ≤ v with probability 1 because this variance is either the same as it is in the

independent case or zero. Consequently, by Theorem 7, we have the following if set v := 4K‖θ‖2
ψ1

and M = ‖θ‖ψ1
:

Pr

({∣∣∣∣∣ 1

K

K∑
k=1

θk

∣∣∣∣∣ > u

})
≤ 2 exp

(
−cK min

{
u2

‖θ‖2
ψ1

,
u

‖θ‖ψ1

})
(9)
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Then by applying (9) to Pr(
∣∣zkx − zky ∣∣ > u), we have the following.

Pr
(∣∣Zk

x − Zk
y

∣∣ > u
)
≤ 2 exp

(
−cmin

{
u2

‖x− y‖2
L2

,
u

‖x− y‖L2

})
The estimate for Pr

(∣∣Zk
x

∣∣ > u
)

follows from the same method, but we define Yk := x2(θk)−1,
and use the fact that ‖x(θ)‖ψ2

≤ 1, which we verified in the second part of Lemma 4. The
L2-norm is bounded above by 1 because we are using rescaled data.

We fix η ≤ c. Assume that u < δ0 = 4 1
η

log 1
δ
. Then we have

Pr
(∣∣Zk

x − Zk
y

∣∣ > 2‖x− y‖L2

)
≤ 2 exp

(
ηK min

{
u, u2

})
< exp

(
−ηKu2

δ0

)
.

By the triangle inequality,

|Wx −Wy| =

∣∣∣∣∣∣
(

1

K

K∑
k=1

x2(θi)

)1/2

−

(
1

K

K∑
k=1

y2(θi)

)1/2
∣∣∣∣∣∣ ≤

(
1

K

K∑
k=1

(x− y)2(θi)

)1/2

.

Applying (9) for u > 1:

Pr
(
|Wx −Wy| > u‖x− y‖ψ2

)
≤ Pr

(
1

K

K∑
k=1

(x− y)2(θk) > u2‖x− y‖2
ψ2

)

≤ Pr

(
1

K

K∑
k=1

(x− y)2(θk) > u2
∥∥(x− y)2

∥∥
ψ1

)
< exp

(
−cku2

)
.

Since η < c, this is bounded by exp(−ηKu2).
For any x ∈ X by (9),

Pr(|Zx| > ε) < exp(−ηKε2) < δ.

We can bound the derivative of Υ:

Υ′(0) = 1/2 > 0.
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Online Appendix B Representation Theory

B.1 The Joint Density Setup

Lemma 5 (Bouding Ratio of Sums by Max Ratio). Let xt, yt be a sequence of positive numbers
with a finite sum. Then the ratio of the sums is bounded by the supremum of the ratios, i.e.,∑

xt∑
yt
≤ sup

t

xt
yt
.

Proof. Clearly, if #t = 1, the result holds. Assume #t = 2. Assume the claim is false. Then

x1 + x2

y1 + y2

> max

{
x1

y1

,
x2

y2

}
=⇒ x1 + x2 > max

{
x1 +

x1y2

y1

, x2 +
x2y1

y2

}
=⇒ x1 >

x2y1

y2

and x2 >
x1y2

y1

=⇒ x1 >
y1

y2

x1y2

y1

=⇒ x1 > x1.

This is a contradiction. To see the general case we proceed by induction,∑
t xt∑
t yt
≤ max

{∑
t6=T xt∑
t6=T

,
xT
yT

}
≤ · · · ≤ max

{
xt
yt

}
,

where the first inequality holds by the first step. Clearly, as long as everything convergent, this
still holds if we take limits.

Lemma 6. Consider the ratio of the densities between pT and qT . Let δqk be a clustering of xt
with respect to qT . Let these clusters δqk satisfy the following, where µqk = EPT [xt | t ∈ δqk] and
Σq
k = CovPT [xt |xt ∈ δqt ]:

sup
δqk

sup
xt∈δqk

∣∣∣(xt − µt)′Σ−1
t (xt − µt)− (xt − µqk)

′ (Σq
k)
−1 (xt − µqk)

∣∣∣ < Cε.

Then the log-divergence satisfies

sup
xt,x∗t

∣∣(xt − µt)′Σ−1
t (xt − µt)− (xt∗ − µt∗)′Σ−1

t∗ (xt∗ − µt∗)
∣∣ < Cε =⇒ sup

xt,x∗t

∣∣∣∣log

(
pT (xt)

pT (xt∗)

)∣∣∣∣ < Cε.

Proof. Consider the log-ratio of Gaussian kernels, by assumption

sup
δqk

sup
xt∈δqk

∣∣∣(xt − µt)′Σ−1
t (xt − µt)− (xt − µqk)

′ (Σq
k)
−1 (xt − µqk)

∣∣∣ < Cε. (10)

Consider the ratio of the proportionality constants χp and χq associated with the kernels
kp, kq above:

χp =

∫
X
kp(x) dx, χq =

∫
X
kq(x) dx.
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By the definition of proportionality constant, we can write

log

(
χq

χp

)
= log

(∑
kq(x) dx∑
kp(y) dy

)
= log

(∑
kq(x)/pT (x) dPT (x)∑
kp(y)/pT (y) dPT (y)

)
,

where we can change measures to PT . By Lemma 5, this is bounded by the supremum of the
ratios, since we are integrating over the same space in both sums:

≤ sup
x

log

(
kq(x)/pT (x)

kp(x)/pT (x)

)
≤ sup

x
log

(
kq(x)

kp(x)

)
,

because the Jacobian terms cancel. We can bound the inverse-ratio of the proportionality
constants — µq

µp
— in the same way. We just interchange the labels on the kernels. Consequently,

the proportionality constants satisfy ∣∣∣∣log
µ1

µ2

∣∣∣∣ < 1

2
Cε (11)

because the k·(x) are Gaussian kernels, and we bounded the log-ratio in (10). The total deviation
is the sum of the deviation in the constants and in the kernels. The result holds by combining
(11) and (10).

Proposition 8 (Bounding the Supremum of the Rescaled Data). The data XT ∈ RT×D is
obtained by stacking the vector xt ∈ RD over t = 1, . . . , T . Let p(xt | Ft−1) satisfy Assumption 1.

Let X̃T denote the rescaled data as in equation (3). Let ΘT be the random compression operator
defined in Definition 3. Let δQt denote the mixture identity induced by ΘT , and δPt denote the
true mixture identity. Let GP

t and GQ
t be the associated mixing measures. Given ε > 0 and

δ ∈ (0, 1/2), there exists a constant C such that

sup
t
h2

(∫
Gt

φ
(
x̃t
∣∣ δPt ) dGP

t (δPt ),

∫
Gt

φ
(
x̃t

∣∣∣ δQt ) dGQ
t (δQt )

)
< C

(
1 + log

(
1

δ

))2

ε2

with probability at least 1− 2δ with respect to ΘT .

Proof. Let K be a coupling between the space of GP and GQ. Consider

sup
t
h2

(∫
Gt

φ
(
x̃t
∣∣ δPt ) dGP

t (δPt ),

∫
Gt

φ
(
x̃t

∣∣∣ δQt ) dGQ
t (δQt )

)
.

We combine the integrals with respect to the marginals (GP
t , G

Q
t ) into a integral with respect to

the joint, and exploit the convexity of the supremum of the squared Hellinger distance:

≤
∫
GPt ×G

Q
t

sup
t
h2
(
φ
(
x̃t
∣∣ δPt ) , φ(x̃t ∣∣∣ δQt )) dK(GP

t , G
Q
t ).
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We expand the definition of h2 using its formula as an f -divergence:

≤
∫
GPt ×G

Q
t

sup
t

∫
RD

∣∣∣∣∣∣∣
 φ

(
x̃t
∣∣ δPt )

φ
(
x̃t

∣∣∣ δQt )
1/2

− 1

∣∣∣∣∣∣∣
2

dΦ
(
x̃t

∣∣∣ δQt ) dK(GP
t , G

Q
t ).

Since we are only considering the density for one period within the integral:

=

∫
GPt ×G

Q
t

∫
RD

sup
t

∣∣∣∣∣∣∣
 φ

(
x̃t
∣∣ δPt )

φ
(
x̃t

∣∣∣ δQt )
1/2

− 1

∣∣∣∣∣∣∣
2

dΦ
(
x̃t

∣∣∣ δQt ) dK(GP
t , G

Q
t )

=

∫
GPt ×G

Q
t

∫
RD

sup
t

∣∣∣∣∣∣exp

1

2
log

 φ
(
x̃t
∣∣ δPt )

φ
(
x̃t

∣∣∣ δQt )
− 1

∣∣∣∣∣∣
2

dΦ
(
x̃t

∣∣∣ δQt ) dK(GP
t , G

Q
t ).

By a first-order Taylor expansion of the exponential function and by Lemma 6 in the online
appendix on the log divergence between the kernels:

≤ C1

∫
GPt ×G

Q
t

∫
RD

sup
t

∣∣∣(x̃t − µ̃Pt )′(Σ̃P
t )−1(x̃t − µ̃Pt )− (x̃t − µ̃Qt )(Σ̃Q

t )−1(x̃t − µ̃Qt )
∣∣∣2 dΦ

(
x̃t

∣∣∣ δQt )
dK(GP

t , G
Q
t ).

where µ̃Pt = E[x̃t | δPt ], Σ̃P
t = Cov[x̃t | δPt ], µ̃Qt = E[x̃t | δQt ], and Σ̃Q

t = Cov[x̃t | δQt ]. Note Q̃T

was obtained by applying ΘT to (Σ̃P
t )−1/2(x̃t − µ̃Pt ). Also, the variance of the rescaled X̃T is

proportional to the variance of the non-rescaled X̃T because they are both proportional to T .
Hence, this norm perturbation is bounded by Cε2 with probability 1− 2δ with respect to ΘT by
Theorem 1:

≤ C

(
1 + log

(
1

δ

))2 ∫
GPt ×G

Q
t

∫
RD
|ε|2 dΦ

(
x̃t

∣∣∣ δQt ) dK(GP
t , G

Q
t ) = C

(
1 + log

(
1

δ

))2

ε2,

where the last equality holds because all of the integrals integrate to 1.

B.2 Representing the Joint Density (Theorem 2)

Proof. Let GP , GQ be the associated mixing measures of the associated covariances. Let K be a
coupling between the space of GP and GQ. The proof here is based on a combination of proofs
of (Nguyen, 2016, Lemma 3.1) and (Nguyen, 2016, Lemma 3.2). Let δt be the latent mixture
identity. We can represent both densities succinctly as follows.

p̃T (X̃ ) =

∫
G

∫
Gt

φ
(
x̃t
∣∣ δPt ) dGP

t

(
δPt
)
dGP

(
dGP

t

)
, q̃T (X̃ ) =

∫
G

∫
Gt

φ
(
x̃t

∣∣∣ δQt ) dGQ
t

(
δQt

)
dGQ

(
dGQ

t

)
.



39

The squared supremum Hellinger distance h2
∞ between the two densities is:

h2
∞

(
p̃T (X̃ ), q̃T (X̃ )

)
=h2
∞

(∫
G

∫
Gt

φ
(
x̃t
∣∣ δPt ) dGP

t (δPt ) dGP (dGP
t ),

∫
G

∫
Gt

φ
(
x̃t

∣∣∣ δQt ) dGQ
t (δQt ) dGQ(dGQ

t )

)
.

Letting K(GP , GQ) be any coupling between the two densities, we can combine GP and GQ into
one process. We want to integrate with respect to their joint density:

= h2
∞

(∫
G

∫
Gt

φ
(
x̃t
∣∣ δPt ) dGP

t (δPt ) dK(dGP
t , dG

Q
t ),

∫
G

∫
Gt

φ
(
x̃t

∣∣∣ δQt ) dGQ
t (δQt ) dK(dGP

t , dG
Q
t )

)
.

Since supremum of squared Hellinger distance is convex, by Jensen’s inequality:

≤
∫
G×G

sup
t
h2

(∫
Gt

φ
(
x̃t
∣∣ δPt ) dGP

t (δPt ),

∫
Gt

φ
(
x̃t

∣∣∣ δQt ) dGQ
t (δQt )

)
dK(dGP

t , dG
Q
t ). (12)

If we can bound the supremum of the deviations over the periods, we have bounded the joint.
This is true even in the dependent case. We can place the bound obtained in Proposition 8
inside (12). Since we are integrating C(1 + log(1/δ))2ε2 over a joint density that is bounded
above by 1, we have with probability 1− 2δ with respect to ΘT :

h2
∞(p̃T (X̃ ), q̃T (X̃ )) < C

(
1 + log

(
1

δ

))2

ε2.

Lemma 7. Let f, g be two densities of locally asymptotically mixed normal (LAMN) processes
with respect to the sample size T . Squared Hellinger distance and Kullback-Leibler divergence
are equivalent.

Proof. Consider the following decomposition of the Hellinger distance:∫
(
√
f/g − 1) dG =

∫ (
exp

(
1

2
(log f − log g)

)
− 1

)
dG.

Taking a Taylor expansion of the exponential function:

=

∫ (
1 +

1

2
log

(
f

g

)
+O

(
log

(
f

g

)2
)
− 1

)
dG (13)

=

∫
1

2
log

(
f

g

)
dG+O

(∫
log

(
f

g

)2

dG

)
. (14)
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Consider one-half the Kullback-Leibler divergence:

1

2

∫
log

(
f

g

)
f

g
dG =

1

2

∫
log

(
f

g

)
exp

(
log

(
f

g

))
dG.

Taking a 1st-order Taylor expansion of the exponential function:

=
1

2

∫
log

(
f

g

)(
1 + log

(
f

g

))
dG =

1

2

∫
log

(
f

g

)
dG+O

(∫ (
log

(
f

g

))2

dG

)
. (15)

The first terms in (13) and (15) are the same. By the locally asymptotically mixed normal
assumption log f(x) ∝ (x − µf)′Σ−1

f (x − µf) + o(T ), where Σ is a random matrix. Choose

ε ∝ 1
T

. Let z denote the deviation above. By the convexity of the square function and Jensen’s
inequality, it is sufficient to bound the value inside the integral:

∫
log(f/g)2 dG ≤

∫
|z|2 dG+O(ε) ≤

∫
|z| dG+O(ε) =

∫
log(f/g) dG+O(ε), (16)

where the first inequality holds by the LAMN property, the second inequality holds since |z| < 1,
and the third-inequality holds by the LAMN property. By (13) and (15), the last term in (16)
is bounded by both the Hellinger and Kullback-Leibler divergences.

B.3 Representing the Transition Density (Theorem 3)

Proof. We need the conditional density of x̃t | x̃t−1, δt−1. By Theorem 2, there exists a generalized
selection matrix ΘT satisfying the statement of the theorem. Conditional on ΘT , the distribution
is Gaussian. So consider the following where θt is the tth row of ΘT . (Throughout, we will
implicitly prepend a 1 to x̃t−1 in order to allow for a non-zero mean as is standard in regression
notation.)

By the linearity of Gaussian conditioning in θtx̃t, θt−1x̃t−1 space, for some βk,k′ , Σk,k′ .

θtx̃t | x̃t−1, θt, θt−1
L
= θtx̃t | θt−1x̃t−1, θt, θt−1

L
= φ(βk,k′θt−1x̃t−1,Σk,k′)

L
= φ(βk,k′x̃t−1,Σk,k′).

The first equality holds because the elements in each cluster have the same Gaussian distribution
under qT . The last equality holds because the elements of θt−1 are in {−1, 0, 1}, we can absorb
the θt−1 into the βk,k′ without increasing the number of clusters more than two-fold. This is
because the vectors θt−1 that contain at most one non-zero element form a convex hull, and we
take the weighted averages over them in (17).

We want the distribution of x̃t given θt−1, x̃t−1. We do not want to condition on θt. So we
can just integrate over θt using its distribution. Its predictive distribution does not depend upon
x̃t−1 because we construct ΘT independently of x̃:

x̃t | θt−1 = k, x̃t−1 ∼
∑
k′

φ(βk,k′x̃t−1,Σk,k′) Pr (θt = k′) (17)
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The last probability — Pr(θt = k′) — does not have any conditioning information because the
rows of the ΘT process are independent except for the stopping rule, which is not relevant here.
Define a set of clusters in (x̃t, x̃t−1) space by grouping the ones whose associated {β,Σ} are
equal. In other words, take the Cartesian product of the clusters used in (17) and denote the
cluster identities by δt’s. Integrating out the cluster identities gives

x̃t | x̃t−1, δt−1 ∼
∑
j

φ(βjx̃t−1,Σj) Pr (δt = j | δt−1) . (18)

Clearly, there are K2
T ∝ log(T )2 different clusters.

We make a similar argument to the one we made in the marginal density case. That is, we
must show that the appropriate divergence between the transition densities is 1/T times the
difference between the joint distributions. The goal is to show that the approximating transition
distribution converges to the true transition distribution. From Proposition 8, we can bound
the supremum Hellinger distance between the distributions of the rescaled data.

Consider the sup-squared-Hellinger distance considered in the proof of the joint density
representation. Let K(GP , GQ) be any coupling between the two densities and integrate with
respect to their joint density:

sup
t
h2

(∫
G

∫
Gt

φ
(
xt
∣∣ δPt ) dGP

t (δPt ) dK(dGP
t , dG

Q
t ),

∫
G

∫
Gt

φ
(
xt

∣∣∣ δQt ) dGQ
t (δQt ) dK(dGP

t , dG
Q
t )

)
.

(19)
Taking the Schweppe decomposition of the joint distribution gives

sup
t
h2

(∏
t

∫
Gt

φ
(
xt
∣∣ δPt ) dGP

t (δPt | FPt−1),
∏
t

∫
Gt

φ
(
xt

∣∣∣ δQt ) dGQ
t (δQt | F

Q
t−1)

)
.

By Lemma 7, we can replace the squared Hellinger distance by Kullback-Leibler divergence

= C sup
t

DKL

(∏
t

∫
Gt

φ
(
xt
∣∣ δPt ) dGP

t (δPt | FPt−1)

∣∣∣∣∣
∣∣∣∣∣∏

t

∫
Gt

φ
(
xt

∣∣∣ δQt ) dGQ
t (δQt | F

Q
t−1)

)
.

Simplifying notation gives:

= C sup
t

DKL

(∏
t

pT
(
xt | FPt−1

) ∣∣∣∣∣
∣∣∣∣∣∏

t

qT
(
xt | FPt−1

))
.

We can split apart the supt and write out the definition of Kullback-Leibler divergence:

C sup
FPt−1,F

Q
t−1

sup
t∈FPt−1∩F

Q
t−1

∫
RT×D

log

(∏
t pT

(
xt | FPt−1

)∏
t qT

(
xt | FPt−1

))∏
t

pT (xt | FPt−1) dXT .
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Dropping the inner supremum cannot make the value larger:

≥ C sup
FPt−1,F

Q
t−1

∫
RT×D

log

(∏
t pT

(
xt | FPt−1

)∏
t qT

(
xt | FPt−1

))∏
t

pT (xt | FPt−1) dXT .

We can replace FPt−1 and FQt−1 by the hidden Markov assumption.

= C sup
xt−1,δPt−1,δ

Q
t−1

∫
RT×D

log

∏t pT
(
xt |xt−1, δ

P
t−1

)∏
t qT

(
xt |xt−1, δ

Q
t−1

)
∏

t

pT (xt |xt−1, δ
P
t−1) dXT .

We can pull the supremum through the integral because it doesn’t depend upon t; it only
depends on the values of xt−1, δ

P
t−1, and δQt−1:

= C

∫
RT

sup
xt−1,δPt−1,δ

Q
t−1

∫
RD

∑
t

log

 pT
(
xt |xt−1, δ

P
t−1

)
qT

(
xt |xt−1, δ

Q
t−1

)
∏

t

pT (xt |xt−1, δ
P
t−1) dxt d(RT ).

We can pull the sum out:

= C

∫
RT

∑
t

sup
xt−1,δPt−1,δ

Q
t−1

∫
RD

log

 pT
(
xt |xt−1, δ

P
t−1

)
qT

(
xt |xt−1, δ

Q
t−1

)
∏

t

pT (xt |xt−1, δ
P
t−1) dxt d(RT ).

The values inside the sum are all the same:

≥ CT

∫
RT

sup
xt−1,δPt−1,δ

Q
t−1

∫
RD

log

 pT
(
xt |xt−1, δ

P
t−1

)
qT

(
xt |xt−1, δ

Q
t−1

)
∏

t

pT (xt |xt−1, δ
P
t−1) dxt d(RT ).

We can interchange the integral over RT and the supremum because they are over different
arguments of pT and qT ; we also expand out the integral:

= CT sup
xt−1,δPt−1,δ

Q
t−1

∫
RD
· · ·
∫
RD

log

 pT
(
xt |xt−1, δ

P
t−1

)
qT

(
xt |xt−1, δ

Q
t−1

)
 dPT (x1 |x0, δ

P
0 ) · · · dPT (xT |xT−1, δ

P
T−1).

As in the marginal case, the only place that the densities inside the logarithm interact with
the values is at t. We are taking the supremum over the conditioning argument so it cannot
create any correlation. Where they do not interact we are simply integrating a constant over its
entire domain.

= CT sup
xt−1,δPt−1,δ

Q
t−1

∫
RD

log

 pT
(
xt |xt−1, δ

P
t−1

)
qT

(
xt |xt−1, δ

Q
t−1

)
 dPT (xt |xt−1, δ

P
t−1).
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This is the sup-Kullback-Leibler divergence between the Markov transition densities:

= CT sup
FPt−1,F

Q
t−1

DKL

(
pT
(
xt | FPt−1

) ∣∣∣∣∣∣ qT (xt | FQt−1

))
. (20)

Equation (19) equals the distance between the joint distributions. Hence, by Theorem 2, we
can bound it by T (1 + log(1/δ))2ε2). The T term comes because we are no longer using rescaled
data. By Lemma 7, we can replace the Kullback-Leibler divergence in (20) by squared Hellinger.

This gives

T sup
FPt−1,F

Q
t−1

h2
(
pT
(
xt | FPt−1

)
, qT

(
xt | FQt−1

))
≤ CT (1 + log(1/δ))2ε2.

Canceling the T terms finishes the proof.

sup
FPt−1,F

Q
t−1

h2
(
pT
(
xt | FPt−1

)
, qT

(
xt | FQt−1

))
≤ C(1 + log(1/δ))2ε2.

B.4 Replacing ΘT with a Dirichlet Process (Lemma 1)

Proof. We can represent a Dirichlet process as Pr(x) =
∑∞

i=1 βiδxi(x), where δxi is a indicator
function with δxi(xi) = 1, and the βi satisfy a stick-breaking process. In other words, βi =
β′i
∏i−1

j=1(1 − β′j) with β′j ∼ Beta(1, α) for some positive scalar α. Consider the probability

mass function of a row of ΘT , θt. Then Pr(|i| = 1) = b
∏j−1

j=1(1 − b). Since draws from the
beta distribution lie in (0, 1) with probability 1, these two stick-breaking processes are clearly
mutually absolutely continuous.

Because these two processes are mutually absolutely continuous, a Radon-Nikodym derivative
exists because both measures are σ-finite. Since the rows are independent, and Dirichlet processes
are normalized random measures (Lin et al., 2010), we can extend this to the entire ΘT process.
In other words, we can choose the base measure of the Dirichlet process so that it puts positive
probability on any atom that ΘT does. Consequently, any process that is representable as an
integral with respect to ΘT can be represented as an integral with respect to to a Dirichlet
process.

Online Appendix C Contraction Rates

C.1 Exponentially Consistent Tests with Respect to h∞

Lemma 8 (Exponentially consistent tests exist with respect to h∞). There exist tests ΥT and
universal constants C2 > 0, C3 > 0 satisfying for every ε > 0, each ξ1 ∈ Ξ, and true parameter
ξP with h∞(ξ1, ξ

P ):

1. PT
(
ΥT

∣∣ ξP ) ≤ exp(−C2Tε
2)
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2. sup
ξ∈Ξ, en(ξ1,ξ)<εC3

PT
(
1−ΥT

∣∣ ξP ) ≤ exp(−C2Tε
2)

Proof. We can represent the joint density as a product density conditionally on a sequence of
latent mixing measures Gt:

f (XT |G1, . . . GT ) =
T∏
t=1

∫
Gft

φ
(
xt

∣∣∣ δft ) dGf
t (δ

f
t ).

Since we are letting Gt differ every period, we can do this for both QT and PT . We can define
a distance between these conditional densities as the sum of the squared Hellinger distances
between each period. This is not the same as the Hellinger distance between the joint measures:

h2
avg

(
f
(
X
∣∣∣ {Gf

t }
)
, g (X | {Gg

t})
)

:=
1

T

T∑
t=1

h2

(∫
Gft

φ
(
xt

∣∣∣ δft ) dGf
t (δ

f
t ),

∫
Ggt

φ (xt | δgt ) dG
g
t (δ

g
t )

)
.

Then by (Birgé, 2013, Corollary 2), there exists a test φT that satisfies the following:13

Pr
T

(
φT (X)

∣∣∣ {Gf
t , G

g
t

})
(21)

≤ exp

(
−1

3
Th2

avg

(∫
Gft

φ
(
xt

∣∣∣ δft ) dGf
t (δ

f
t ),

∫
Ggt

φ (xt | δgt ) dG
g
t (δ

g
t )

))

and

Pr
T

(
1− φT (X)

∣∣∣ {Gf
t , G

g
t

})
(22)

≤ exp

(
−1

3
Th2

avg

(∫
Gft

φ
(
xt

∣∣∣ δft ) dGf
t (δ

f
t ),

∫
Ggt

φ (xt | δgt ) dG
g
t (δ

g
t )

))
.

The issue with these equations is that they are not in terms of h∞ and only hold condition-
ally. The reason that we can get around this is because they hold for all Gf

t and for all Gg
t .

Consequently, we can take the infimum of both sides, and bound the right-hand side of both
equations by

T

3
sup

{(Gft ,G
g
t )}
h2

avg

(∫
Gft

φ
(
xt

∣∣∣ δft ) dGf
t (δ

f
t ),

∫
Ggt

φ (xt | δgt ) dG
g
t (δ

g
t )

)
13To map his notation into ours, take his z = 0, and take his measure R equal to P . Equation (21) is obvious

then, and (22) follows by taking the exponential of both sides in the inequality inside the probability and
rearranging.
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for any length T sequence. This equals the least favorable Gf
t and Gg

t repeated T times. This
joint distribution exists in our set because we are not placing any restrictions on the dynamics
besides ergodicity. Stationary distribution are clearly ergodic. Hence, this equals

=
T

3

1

T

T∑
t=1

h2

(∫
Gfsup

φ
(
xt

∣∣∣ δft ) dGf
sup(δ

f
t ),

∫
Ggsup

φ (xt | δgt ) dGg
sup(δ

g
t )

)
.

The terms inside the sum are all the same:

=
T

3
h2

(∫
Gfsup

φ
(
xt

∣∣∣ δft ) dGf
sup(δ

f
t ),

∫
Ggsup

φ (xt | δgt ) dGg
sup(δ

g
t )

)

=
T

3
sup

(Gft ,G
g
t )

h2

(∫
Gft

φ
(
xt

∣∣∣ δft ) dGf
t (δ

f
t ),

∫
Ggt

φ (xt | δgt ) dG
g
t (δ

g
t )

)

=
T

3
h2
∞

(∫
Gft

φ
(
xt

∣∣∣ δft ) dGf
t (δ

f
t ),

∫
Ggt

φ (xt | δgt ) dG
g
t (δ

g
t )

)
.

Taking the supremum over Gf
t and Gg

t is equivalent to taking supremum over Fft−1 and Fgt−1

because the Gf
t and Gg

t are measurable functions of the later, and we are taking the supremum
outside of the integral. They both span the same information sets. Since we can bound the
error probabilities in both directions, using exponentially consistent tests, we have shown both
items in Lemma 8 hold.

C.2 Bounding the Posterior Divergence (Proposition 4)

Proof. We are looking at locally asymptotically mixed normal models, as discussed in Lemma 7,
and we bind the Hellinger distance and Kullback-Leibler divergence in terms of (xt−µt)′Σ−1

t (xt−
µt). In addition, the supremum of the deviations is clearly greater than the average of the
deviations, and so the h∞-norm forms smaller balls than both DKL (f || g) and Vk,0. Consequently,
we can replace BT (ξ0, εT , 2) with {ξ ∈ Ξ |h2

∞(ξ, ξ0) < ε2T}. We use 2 as the last argument of B
because we are using V2,0, i.e., effectively the 2nd-moment of the Kullback-Leibler divergence.

To prove the result we need to find a sequence εT,i → 0 that satisfies the following two
conditions:

sup
εi>εT

logN (C2εi, {ξ ∈ ΞT |h∞(ξ, ξ0) ≤ εi} , h∞) ≤ Tε2T (23)

and

QT
({
ξ ∈ Ξ

∣∣h2
∞(ξ, ξ0) < ε2T

}
|XT

)
≥ exp

(
−C3Tε

2
T

)
. (24)

These two conditions work in opposite directions. The first criterion is easier to satisfy the larger
εT is, but to achieve a fast rate of convergence we want a small εT in the second condition.

By assumption, there exists a covering with Ki
T = log(T )i

η2T
components such that the following

holds:
sup
t
h
(
qT

(
xt

∣∣∣FQt−1

)
, pT

(
xt
∣∣FPt−1

))
< CηT . (25)
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Since ε2T asymptotically dominates T , the right-hand-side of (24) is clearly less than 1− δ for
large T . The QT puts probability at least 1− δ on the (Cη)−ball surrounding ξ0 by (25). So

(24) is clearly satisfied if CηT ≤ εT . Setting CηT = εT gives ηT = 1
C

√
log(T )
T

.

Solving for KT gives KT = log(T )i

η2T
= C2T log(T )i−1. This KT is proportional to the number

of terms we are using, and the bracketing number is proportional to the covering number. In
other words, for come constant C1,

logN
(
C2εi,

{
ξ ∈ Ξ

∣∣h2
∞(ξ, ξ0) ≤ εi

}
, h2
∞
)

= logC1KT

= log
(
T log(T )i−1

)
+ log(C1) = log(T ) + log

(
(i− 1) log(T )

)
+ log(C1)

Because log(T ) dominates the other terms, for some constant C4 > 1:

≤ C4 log(T ) = C4T
log(T )

T
= C4Tε

2
T .

This completes the proof because we can allow for a constant C4 multiplied on the right-hand
side of (23)14.

C.3 Contraction Rate of the Transition Density (Theorem 5)

Proof. The proof of this is essentially identical to the marginal density case, mutatis mutandis.
Lemma 8 implies the that h∞ has the required exponentially consistent tests. We verify the
conditions in Proposition 4. If we take i = 2 in the condition in Proposition 4, Theorem 3
implies the necessary bound on the sieve complexity exists.

This verifies the three conditions in ?? on a set with with probability 1− 2δ with respect to

the prior. This then gives us the posterior contraction rate εT =
√

log(T )
T

.

Online Appendix D Estimation Strategy and Posterior Derivations

D.1 Bounding KT with Walker (2007)

We draw the cluster identities by adapting Walker (2007) because this algorithm is exact (we do
not need to truncate the distribution) and computationally efficient. He does this by introducing
a random variable — ut — so that, conditional on ut, the distributions are available in closed
form.

14The proof of Ghosal and van der Vaart (2007a) goes through with this additional constant unchanged.√
C4εT characterizes the convergence rate for the distance h∞. Since multiplying a norm by a constant clearly

does not change the convergence rate, εT characterizes the convergence rate under 1√
C4
h∞ (equivalently h∞) as

well. We have

logN

(
C2

√
C4εi,

{
ξ ∈ Ξ

∣∣∣∣ 1√
C4

h2∞(ξ, ξ0) ≤ εi
}
, h2∞

)
≤ Tε2T .
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Given the cluster parameters, we can write the distribution of xt as

qT (xt) =
∞∑
k=1

Πt,kφ (xt | βkxt−1,Σk) . (26)

As mentioned above, we introduce a latent variable ut ∼ U(0,Πt,k) so we can rewrite (26) as

qT (xt) =
∞∑
k=1

1 (ut < Πt,k)φ (xt | βkxt−1,Σk) =
∞∑
k=1

Πt,kU (ut | 0,Πt,k)φ (xt | βkxt−1,Σk) .

Consequently, with probability Πt,k, xt and ut are independent, and so the marginal density for
ut is

Pr
(
ut
∣∣ {Πt,k}Kk=1

)
=
∞∑
k=1

Πt,kU (ut | 0,Πt,k) =
∞∑
k=1

1 (ut < Πt,k) .

Then we can condition on {ut}Tt=1 as a vector, but not on Πt,k.

Pr
(
{vk}Kk=1

∣∣ {δt}Tt=1

)
= Q0

(
{vk}Kk=1

) T∏
t=1

1

(
vk=δt

∏
κ<δt

(1− vκ) > uk=δt

)
, (27)

where the vk are the sticks in the stick-breaking representation of the prior.
The dependence between the ut does not affect (27) because the vk do not depend upon t.

Hence, the vk are conditionally independent given {ut}Tt=1. Exploiting this independence and
the stick-breaking representation of the prior, we can draw vk from (27); it only shows up once
in the product. By adopting the prior for the sticks implied by standard Dirichlet process —
Beta(1, α), we use (27) to draw vk. As shown by Papaspiliopoulos and Roberts (2008), this
implies vk are distributed:

vk ∼ Beta

(
1 +

T∑
t=1

1(δt = k), T −
k∑

κ=1

T∑
t=1

1(δt = κ) + α

)

for k = 0, 1, . . .. We only need to do this for the vk where k ≤ max(δt). These sticks are the
only sticks that affect the likelihood. We can calculate the marginal cluster probabilities πk:

πk = vk

k∏
κ=1

(1− vκ).
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D.2 Component Coefficients Posterior

Let Xk be the Tk ×N vector and Yk be the Tk ×D vector of data in component K. This implies that Σk is a D×D matrix and βk
is an N ×D matrix.15 Meanwhile, V is a D ×D matrix and U is a N ×N matrix.

The joint density is

Pr (Yk, βk,Σk |Xk) = exp

(
−1

2
tr
{
V −1
k

(
βk − β̄

)′
U−1

(
βk − β̄

)})
exp

(
−1

2
tr
{

(Yk −Xkβk) Σ−1
k (Yk −Xkβk)

′})
|Σk|−Tk/2

(2π)Tk/2
1√

(2π)ND|V |N |U |D
|(µ1 − 2)Ω|ν/2√

2νDΓD(ν
2
)
|Σk|−

ν+D+1
2 exp

(
−1

2
tr
{

(µ1 − 2)ΩΣ−1
k

})
(28)

By the additivity and circular commutativity of the trace, and associativity of matrix multiplication:

∝ |Σk|−
ν+D+T+1

2 exp

(
−1

2
tr
{
V −1
k

(
βk − β̄

)′
U−1

(
βk − β̄

)})
exp

(
−1

2
tr
{(

(Yk −Xkβk)
′ (Yk −Xkβk) + (µ1 − 2)Ω

)
Σ−1
k

})
.

Combining the two kernels of βk and expanding gives

∝ |Σk|−
ν+D+T+1

2 exp

(
−1

2
tr
{
V −1

((
βk − β̄

)′
U−1

(
βk − β̄

))
+
(
(Yk −Xkβk)

′ (Yk −Xkβk) + (µ1 − 2)Ω
)

Σ−1
k

})
= |Σk|−

ν+D+T+1
2 exp

(
−1

2
tr
{
V −1
k

(
β′kU

−1βk − 2β′kU
−1β̄ + β̄′U−1β̄

)
+ Σ−1

k (Y ′kYk − 2β′kX
′
kYk + β′kX

′
kXkβk + (µ1 − 2)Ω)

})
.

Isolating the terms that have a βk in them:

= exp

(
−1

2
tr
{
V −1
k

(
−2β′kU

−1β̄ + β′kU
−1βk

)
+ Σ−1

k (−2β′kX
′
kYk + β′kX

′
kXkβk) + V −1

k β̄′U−1β̄ + Σ−1
k (Y ′kYk + (µ1 − 2)Ω)

})
.

|Σk|−
ν+D+T+1

2

15The likelihood in (28) is correct because the trace is the sum of the diagonal elements.
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Rewriting the traces in terms of the vectorization operator:

= exp

(
−1

2

(
tr
{
V −1
k (−2β′kU

−1β̄)
}

+ vec{βk}′ vec
{
U−1βkV

−1
k

}
tr
{

Σ−1
k (−2β′kX

′
kYk)

}
+ vec{βk}′ vec

{
X ′kXkβkΣ

−1
k

}))
exp

(
−1

2
tr
{
V −1
k β̄′U−1β̄ + Σ−1

k (Y ′kYk + (µ1 − 2)Ω)
})
|Σk|−

ν+D+T+1
2 .

Exploiting the relationship between vectorization and the Kronecker product and then combining squared terms:

∝ exp

(
tr
{
β′k
(
U−1β̄V −1

k +X ′kYkΣ
−1
k

)}
− 1

2
tr
{((

V −1
k ⊗ U−1

)
+
(
Σ−1
k ⊗X

′
kXk

))
vec{βk} vec{βk}′

})
exp

(
−1

2
tr
{
V −1
k β̄′U−1β̄ + Σ−1

k (Y ′kYk + (µ1 − 2)Ω)
})
|Σk|−

ν+D+T+1
2 .

If we assume that Vk = Σk, we can simplify this as

= exp

(
tr
{
β′k
(
U−1β̄ +X ′kYk

)
Σ−1
k

}
− 1

2
tr
{(

Σ−1
k ⊗ (U−1 +X ′kXk)

)
vec{βk} vec{βk}′

})
exp

(
−1

2
tr
{

Σ−1
k

(
β̄′U−1β̄ + Y ′kYk + (µ1 − 2)Ω

)})
|Σk|−

ν+D+T+1
2

= exp

(
vec{βk}′ vec

{(
U−1β̄ +X ′kYk

)
Σ−1
k

}
− 1

2
vec{βk}′

(
Σ−1
k ⊗ (U−1 +X ′kXk)

)
vec{βk}

)
exp

(
−1

2
tr
{

Σ−1
k

(
β̄′U−1β̄ + Y ′kYk + (µ1 − 2)Ω

)})
|Σk|−

ν+D+T+1
2 . (29)

We now use the multivariate completion of squares: u′Au−2α′u = (u−A−1α)′A(u−A−1α)−α′A−1α. Let Zk := (U−1β̄+X ′kYk)
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and Wk := (U−1 +X ′kXk). We can rewrite (29) as

= exp

(
− 1

2

(
vec{βk} − (Σ−1

k ⊗Wk)
−1ZkΣ

−1
k

)′
(Σ−1

k ⊗Wk)
(
vec{βk} − (Σ−1

k ⊗Wk)
−1ZkΣ

−1
k

))

exp

(
1

2
Σ−1
k Z ′k(Σ

−1
k ⊗Wk)

−1ZkΣ
−1
k

)
exp

(
−1

2
tr
{

Σ−1
k

(
β̄′U−1β̄ + Y ′kYk + (µ1 − 2)Ω

)})
|Σk|−

ν+D+T+1
2 .

I now eliminate all of the Kronecker products:

= exp

(
−1

2
vec
{
βk −W−1

k Zk
}′

vec
{
Wk

(
βk −W−1

k Zk
)

Σ−1
k

})
exp

(
1

2
vec
{

(U−1β̄ + Zk)Σ
−1
k

}′
vec
{
W−1
k Zk

}
− 1

2
tr
{

Σ−1
k

(
β̄′U−1β̄ + Y ′kYk + (µ1 − 2)Ω

)})
|Σk|−

ν+D+T+1
2 .

We rewrite this in terms of the traces, reorder some of the terms, and substitute the definitions of Zk and Wk back in:

= exp

(
−1

2
tr

{
Σ−1
k

(
βk −

(
U−1sX ′kXk

)−1 (
U−1β̄ +X ′kYk

))′ (
U−1sX ′kXk

) (
βk −

(
U−1sX ′kXk

)−1 (
U−1β̄ +X ′kYk

))})
exp

(
−1

2
tr
{

Σ−1
k

((
β̄′U−1β̄ + Y ′kYk + (µ1 − 2)Ω

)
−
(
U−1β̄ +X ′kYk

)′ (
U−1sX ′kXk

)−1 (
U−1β̄ +X ′kYk

))})
|Σk|−

ν+D+T+1
2 .

The first expression is kernel of a matrix-normal distribution. The mean is (U−1sX ′kXk)
−1 (

U−1β̄ +X ′kYk
)
, and the two

covariance parameters are Σk, and (U−1sX ′kXk)
−1

. The second expression is the kernel of a Inverse-Wishart distribution. Its scale

parameter is
(
β̄′U−1β̄ + Y ′kYk + (µ1 − 2)Ω

)
−
(
U−1β̄ +X ′kYk

)′
(U−1sX ′kXk)

−1 (
U−1β̄ +X ′kYk

)
. It has µ1 + D − 1 + Tk degrees of

freedom. To see the intuition behind this, note that if U−1 and Ω both equal zero, this equals Y ′kYk − Y ′kX ′k(X ′kX ′k)−1XkYk, i.e., the
sum of squared residuals. Since the βk parameter does not show up in the second expression, we can draw from the posterior by
drawing the Σk from its marginal posterior, and then drawing from the posterior of βk conditional on Σk .
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D.3 Hierarchical Mean Posterior with Heteroskedastic Data

We now compute the posterior of the hierarchical mean for the coefficients conditional on the covariance matrices, {Σk}KTk=1:

Pr
(
{β}Kk=1, β̄, {Σ}Kk=1

)
= exp

(
−1

2
tr
{
V −1

(
β̄ − β†

)′
U−1

(
β̄ − β†

)})
exp

(
K∑
k=1

−1

2
tr
{

Σ−1
k

(
βk − β̄

)′
U−1

(
βk − β̄

)})
√

(2π)ND|U |D|U |−
νU+N+1

2 exp

(
−1

2
tr
{

ΨUU
−1
}) K∏

k=1

1√
(2π)ND|Σk|N |U |D

Dropping all of the terms that contain neither β̄ nor U :

∝ |U |−
νU+N+(K+1)D+1

2 exp

(
−1

2
tr

{
V −1

(
β̄ − β†

)′
U−1

(
β̄ − β†

)
+

K∑
k=1

Σ−1
k (β̄ − βk)′U−1(β̄ − βk)

})
exp

(
−1

2
tr
{

ΨUU
−1
})

.

Expanding out the terms and dropping terms that do not involve β̄ or U :

∝ exp

(
−1

2
tr

{
V −1β̄′U−1β̄ − 2V −1β†

′
U−1β̄ + V −1β†

′
U−1β† +

K∑
k=1

Σ−1
k (β̄′U−1β̄ − 2β′kU

−1β̄ + β′kU
−1βk

})

|U |−
νU+N+(K+1)D+1

2 exp

(
−1

2
tr
{

ΨUU
−1
})

.

Exploiting properties of the trace and vectorization, where B := vec
{
β̄
}

:

∝ exp

(
−1

2
vec
{
β†
}′ (

V −1 ⊗W−1
)
B + vec

{
W−1β†

′
V −1

}′
B − 1

2

K∑
k=1

tr
{

(Σ−1
k ⊗ U

−1)BB′
}

+ vec

{
K∑
k=1

U−1βkΣ
−1
k

}′
B

)

|U |−
νU+N+(K+1)D+1

2 exp

(
−1

2
tr

{
V −1β†

′
U−1β† +

K∑
k=1

Σ−1
k β′kU

−1βk + ΨUU
−1

})
.
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We can simplify using the circular commutativity of the trace:

∝ exp

(
−1

2
vec
{
β̄
}′(( K∑

k=1

Σ−1
k

)
⊗ U−1 + V −1 ⊗ U−1

)
vec
{
β̄
}

+ vec

{
U−1β†V −1 +

K∑
k=1

U−1βkΣ
−1
k

}′
vec
{
β̄
})

|U |−
νU+N+(K+1)D+1

2 exp

(
−1

2
tr

{
β†V −1β†

′
U−1 +

K∑
k=1

βkΣ
−1
k β′kU

−1 + ΨUU
−1

})
.

Collecting terms:

∝ exp

(
−1

2
vec
{
β̄
}′(( K∑

k=1

Σ−1
k + V −1

)
⊗ U−1

)
vec
{
β̄
}

+ vec

{
U−1

(
β†V −1 +

K∑
k=1

βkΣ
−1
k

)}′
vec
{
β̄
})

|U |−
νU+N+(K+1)D+1

2 exp

(
−1

2
tr

{(
β†V −1β†

′
+

K∑
k=1

βkΣ
−1
k β′k + ΨU

)
U−1

})

∝ exp

(
−1

2
tr

{(
K∑
k=1

Σ−1
k + V −1

)
β̄′U−1β̄ +

(
β†V −1 +

K∑
k=1

βkΣ
−1
k

)′
U−1β̄

})
(30)

|U |−
νU+N+(K+1)D+1

2 exp

(
−1

2
tr

{(
β†V −1β†

′
+

K∑
k=1

βkΣ
−1
k β′k + ΨU

)
U−1

})
.

We now vectorize the first line of (30) after using the circular commutativity of the trace to simplify the square term. We drop
the second line for now to simplify the exposition. We will bring it back in later. This gives

exp

(
−1

2
vec
{
β̄
}′(( K∑

k=1

Σ−1
k + V −1

)
⊗ U−1

)
vec
{
β̄
}
− 2 vec

{
U−1

(
β†V −1 +

K∑
k=1

βkΣ
−1
k

)}′
vec
{
β̄
})
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We then apply the multivariate equation of squares, and let Z := (β†V −1 +
∑K

k=1 βkΣ
−1
k ) and W := (

∑K
k=1 Σ−1

k + V −1) :

= exp

(
−1

2

(
vec
{
β̄
}
−
(
W ⊗ U−1

)−1
vec
{
U−1Z

}) (
W ⊗ U−1

) (
vec
{
β̄
}
−
(
W ⊗ U−1

)−1
vec
{
U−1Z

}))
exp

(
1

2
vec
{
U−1Z

}′ (
Z ⊗ U−1

)−1
vec
{
U−1Z

})
We can simplify the vectorization.

= exp

(
−1

2
vec
{
β̄ − ZW−1

} (
W ⊗ U−1

)
vec
{
β̄ − ZW−1

})
exp

(
1

2
tr
{
U−1ZW−1Z ′

})

We can replace the vectorizations with traces.

= exp

(
−1

2
tr
{
U−1

(
β̄ − ZW−1

)
W
(
β̄ − ZW−1

)})
exp

(
1

2
tr
{
U−1ZW−1Z ′

})
(31)

Equation (31) is the kernel of a matrix normal distribution given the covariance matrices. We substitute the definitions of
W and Z back in. The row matrix covariance is U , the column posterior covariance is (

∑K
k=1 Σ−1

k + V −1), and the mean is

(β†V −1 +
∑K

k=1 βkΣ
−1
k )(

∑K
k=1 Σ−1

k + V −1)−1 Note, there is no reason here that βk cannot itself be a matrix.
To compute the distribution of U , we combine the last lines of (30) and (31). This gives

|U |−
νU+N+(K+1)D+1

2 exp

(
− 1

2
tr

{
U−1

(
β†V −1β†

′
+

K∑
k=1

βkΣ
−1
k β′k + ΨU

−

(
β†V −1 +

K∑
k=1

βkΣ
−1
k

)(
K∑
k=1

Σ−1
k + V −1

)−1(
β†V −1 +

K∑
k=1

βkΣ
−1
k

))′})

Clearly, U is marginally inverse-Wishart. It has νU + (K + 1)D degrees of freedom, and its scale matrix equals β†V −1β†
′
+∑K

k=1 βkΣ
−1
k β′k + ΨU − (β†V −1 +

∑K
k=1 βkΣ

−1
k )(

∑K
k=1 Σ−1

k + V −1)−1(β†V −1 +
∑K

k=1 βkΣ
−1
k )′.
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D.4 Innovation Covariances’ Mean Posterior

The product of the relevant likelihood and prior is

Ω | {Σk, }Kk=1 ∝
K∏
k=1

|Ω|
µ1+D−1

2 exp

(
−µ1 − 2

2
tr
{

ΩΣ−1
k

})
· |Ω|

µ2−2
2 exp

(
−1

2
tr
{

diag(a1, . . . , aD)−1Ω
})

.

Since matrix multiplication distributes over matrix addition:

=|Ω|
K(µ1+D−1)

2 exp

(
−µ1 − 2

2

K∑
k=1

tr
{

ΩΣ−1
k

})
· |Ω|

µ2−2
2 exp

(
−1

2
tr
{

diag(a1, . . . , aD)−1Ω
})

=|Ω|
K(µ1+D−1)+µ2−2

2 exp

(
−1

2
tr

{(
diag(a1, . . . , aD)−1 + (µ1 − 2)

K∑
k=1

Σ−1
k

)
Ω

})
.

This is the kernel of a Wishart distribution. That is

Ω | {Σk}Kk=1 ∼ W

K(µ1 +D − 1) + (µ2 +D − 1),

(
diag(a1, . . . , aD)−1 + (µ1 − 2)

K∑
k=1

Σ−1
k

)−1
 .
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Online Appendix E Empirical Analysis

E.1 One-Period Ahead Conditional Forecasts: Macroeconomic Vari-
ables

Figure 7: One-Period Ahead Conditional Forecasts

(a) Treasury Yield Posterior Density

1970 1980 1990 2000 2010 2020
10-Year Treaury Yield

6

4

2

0

2

4

6
Realization
Median
50%
90%
98%

(b) PIT Histogram

0.0 0.2 0.4 0.6 0.8 1.0
10-Year Treaury Yield

0.0

0.5

1.0

1.5

2.0

(c) PIT ACF

0 10 20 30 40
10-Year Treaury Yield

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(d) Housing Supply Posterior Density
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(g) Industrial Production Posterior Den-
sity
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(j) Unemployment Rate Posterior Density
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(m) PCE Posterior Density
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