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Abstract

Announcements and other news continuously barrage financial markets, causing asset prices to
jump hundreds of times each day. If price paths are continuous, the diffusion volatility nonpara-
metrically summarizes the return distributions’ dynamics, and risk premia are instantaneous
covariances. However, this is not true in the empirically-relevant case involving price jumps. To
address this impasse, I derive both a tractable nonparametric continuous-time representation
for the price jumps and an implied sufficient statistic for their dynamics. This statistic — jump
volatility — is the instantaneous variance of the jump part and measures news risk. The realized
density then depends, exclusively, on the diffusion volatility and the jump volatility. I develop
estimators for both and show how to use them to nonparametrically identify continuous-time
jump dynamics and associated risk premia. I provide a detailed empirical application to the S&P
500 and show that the jump volatility premium is less than the diffusion volatility premium.
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1. INTRODUCTION

The study of how individuals’ react to time-varying risk forms the core of modern finance and
macroeconomics. Asset pricing, portfolio allocation, and performance evaluation all require in-
vestors to asses the risk they face in real time. Moreover, optimal financial regulation requires
trading off risk and return at the societal level, and real-time risk measures form its core as well.
The most general measure of this risk is the distribution of future returns as a function of the
information available.

About fifteen years ago, Barndorff-Nielsen and Shephard (2002) and Andersen, Bollerslev,
Diebold, and Labys (2003) substantially enhanced our understanding of the volatility by providing
the nonparametric Realized Volatility estimator for the integrated diffusion volatility. Moreover,
they showed that as long as price paths are continuous (that is, they are stochastic volatility diffu-
sions) the diffusion volatility entirely determines the continuous-time martingale dynamics. They
also derived closed-form expressions for the discrete-time distributions as functions of integrated
diffusion volatility by time-aggregating the continuous-time measures. Another series of classic
papers shows that the instantaneous covariance between prices and investors’ stochastic discount
factors determine risk premia, (Merton 1973; Breeden 1979; Bollerslev, Engle, and Wooldridge
1988a).

However, hundreds of quantitatively relevant news releases strike financial markets every day
and cause the prices to jump. Ait-Sahalia and Jacod (2009a, 2009b, 2012) even show that models
with infinitely many jumps fit the data better than models with only finitely many jumps. Mean-
while, various papers, such as Drechsler and Yaron (2011) and Ai and Bansal (2018), show the
parsimonious covariance-based characterizations of risk premia mentioned above fail when prices
jump.

At present, however, no parsimonious representation with nonparametrically identified dynam-
ics exists for jump processes. To address this impasse, I derive both a tractable nonparametric
continuous-time representation for the price jumps and an implied sufficient statistic for their dy-
namics. This statistic — jump volatility — is the instantaneous variance of the jump part and
measures news risk. The resulting realized density then depends, exclusively, on the diffusion and
jump volatilities in continuous-time. In other words, volatilities control all of the distribution’s
short-horizon dynamics. I then time-aggregate this representation and derive closed-form represen-
tations for the discrete-time densities and volatilities.

To enable taking this theory to the data, I develop an estimator for the instantaneous diffusion
volatility by extending Jacod et al. (2009). T identify the jump part of the dynamics, in the presence
of stochastic diffusion volatility by deriving the first estimator for instantaneous jump volatility. I
time-aggregate both estimators to provide estimators for the daily diffusion and jump volatilities.
I then apply these estimators to high-frequency data on the S&P 500. This provides several new
stylized facts. First, diffusion and jump volatility are highly positively correlated. Second, like
diffusion volatility, jump volatility is highly persistent, remaining high for extended periods of time

during recessions.
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I then connect jump volatility to consumption-based asset pricing by nonparametrically char-
acterizing continuous-time risk-premia in the presence of recursive utility and jumps. My charac-
terization shows how jump and diffusion volatility jointly determine risk premia and requires both
terms in general. I then take my estimators to the data and show that the diffusion volatility
commands an economically and statistically significant premium, as in Brandt and Kang (2004)
and Lettau and Ludvigson (2010). I further show that the jump volatility is substantially less than
the diffusion volatility premium. I show that this implies that investor’s preferences are not time-
separable and that we need at least two factors that move at high-frequency to explain movements
in risk premia.

I lay out the paper as follows. The remainder of the introduction fixes ideas and explains the
close connection between discontinuous information flows and jumps in asset prices. Section 2
relates my paper to the rest of the literature. Section 3 lays out the data generating process 1
use, while Section 4 proves the main representation theorem. Section 5 derives the estimators,
and Section 6 characterizes their finite-sample performance in simulations. Section 7 describes
my dataset, and Section 8 provides a series of new stylized facts concerning the jump volatility
dynamics. I derive risk premia in the presence of recursive utility and jumps in Section 9 and
show that the jump volatility premium is less than the diffusion volatility premium in Section 10.

Section 11 concludes. The appendices contain the proofs and robustness checks.

1.1. Stylized Features of the Data

I motivated this project by claiming that prices jump extremely often and that news frequently and
dramatically affect asset prices. The literature has shown this, but it is helpful to investigate the
matter ourselves to fix ideas. We need high-frequency data to identify these jumps, and so I start
there. The data show jumps in price processes are ubiquitous and form a large portion of the price’s
variation. For example in Figure 1, I plot the daily log-return on the S&P 500 during 2012 and
then zoom in on the 1-second return on April 16. The red lines are jumps in the prices identified
by sampling the data once per second, and the blue lines contain the diffusion part of the process
and jumps that are too small to identify easily. The behavior in this graph is entirely typical. I
purposefully chose April 16, 2012, because it was a completely normal day in the markets.

As we can see in Figure 1, prices jump extremely often and drive a great deal of the variation
in the price. Estimates range from as low as ~ 7% to as high as ~ 80 %, (Pan 2002; Huang
and Tauchen 2005; Santa-Clara and Yan 2010; Ornthanalia 2014). In particular, Ait-Sahalia and
Jacod (2009a) find jumps drive & 40 % of the squared variation in individual equities and ~ 10 %
of the variation in the market index using a ratio of bipower-type estimators. This wide divergence
between various estimates likely arises from the difficulty in disentangling the infinite-activity jumps
from the diffusive part. The precise percentage is not important for this paper. I estimate this
proportion below, (Figure 7). Rather, the important takeaway is that jumps occur frequently
enough to be important, and even 7% of the variation in the market is economically meaningful.

Almost every paper that explicitly tests for the degree of activity finds infinitely-active jumps,
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Figure 1: S&P 500 Log-Return
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or at the very minimum a massive number, (Ait-Sahalia, Mykland, and Zhang 2005; Bakshi, Carr,
and Wu 2008; Ait-Sahalia and Jacod 20092a).! From both a modeling and pricing perspective, a
large number of jumps and infinitely many are essentially equivalent in practice, as shown in detail
below. Even if the literature has not reached a consensus on the number and magnitude of the

jumps, it is clear that jumps are ubiquitous and crucial to understanding price dynamics.

1.2. What Causes Jumps?

To understand Figure 1a, we need to understand what precisely a jump is. There are two equivalent
characterizations. First, a jump is a discontinuity in the price process. The price changes by such a
large amount over such a small period that we cannot draw a continuous line through it. However,
this is a mathematical definition; we would like an economic characterization. What are jumps
economically?

Various authors, such as Andersen, Bollerslev, Diebold, and Vega (2003, 2007), Beechey and
Wright (2009), and Lahaye, Laurent, and Neely (2011), argue that jumps are responses of prices
to news releases. Most of these papers consider the effects of macroeconomic announcements
on prices. They start with a series of news items that they a priori believe to be important
and show that the prices react effectively instantaneously.” However, in general, many different
sources cause discontinuities in investor’s information sets. Other sources include Congressional
decisions, a startup announcing a new product line on Twitter, effectively anything in a Bloomberg
or Associated Press feed relevant for asset pricing, even private communications between financiers.
The last point highlights the utter impossibility of listing all the potentially relevant events. We

cannot construct investors’ actual information sets. (Note, this paper uses news quite broadly.

1. The single exception is Christensen, Oomen, and Podolskij (2014), which I discuss in Section 8.3.
2. By far the most commonly studied announcements are the Federal Open Market (FOMC) announcements.
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It refers to any discontinuous change in information, not just traditional news sources such as
newspapers.) As these examples illustrate, news often come at unpredictable times and only a
few investors may observe it, and so a priori choosing which news items are relevant necessarily
excludes many relevant items. Besides, there is no reason to assume that the resultant price change
is in any way substantial. Many news items cause a small, but measurable, impact on the prices.

The connection between news and jumps is rather intuitive, and the empirics in the papers
mentioned substantiate it. However, the connection is even more fundamental. Delbaen and
Schachermayer (1994) show no-arbitrage implies prices are semimartingales.® In that framework,
which is standard in high-frequency econometrics, jump times are times when the information
contained in prices jumps. In other words, jump times are times when the representative investor’s
information set evolves discontinuously.

To make this claim precise, consider the following. Let P(t) be a price process, and F! be its
natural filtration.* F? contains the events that are known at time ¢ to anyone observing the history
of prices up to t. In other words, it is the part of the representative investor’s information set
relevant for pricing. Then, P(t) jumps at 7 if and only if 7 jumps at 7. Since standard economic
intuition implies that causality runs from information to prices, P(t) jumps whenever the available
information evolves discontinuously, that is a news item is released. This relationship implies that
we can identify news shocks by looking for jumps in the prices. Consequently, since the jump

volatility is a sufficient statistic for jumps dynamics, it measures news risk.

Theorem 1 (Jump Times are News Times). Consider a stopping time 7. Let P(t) be a price
process satisfying no-arbitrage. Then its natural filtration — FF — contains all of the information
in the representative investor’s information set relevant for asset pricing, and F¥ # FE_ if and

only if P(t) jumps at T, where F¥_ is the associated predictable filtration.

This result also explains why not all price changes are jumps. Prices do not always reflect new
information instantaneously. Some information takes time to process before the market participants
can use it effectively. For example, after a firm announces its earnings, the headline results reveal
much of the information. However, many articles still analyze what each release implies about both
the stock in question and other related assets. As various investors update their beliefs and buy or
sell accordingly, other market participants see the information that is now revealed by the prices

and buy or sell themselves. This process changes the asset’s price, and it takes time.

2. LITERATURE REVIEW

Since questions concerning volatility, news, and risk-return trade-offs are central to finance and

economics, a few different literatures study the questions considered in this paper. Consequently,

3. Throughout this paper, I use no-arbitrage to refer to no-free-lunch with vanishing risk as is standard in
continuous-time finance.

4. This paper uses functional notation to refer stochastic processes and subscript notation to refer to discrete-time
objects, e.g., P(t) is the price process, and P; is the price at ¢. I time-index objects by the first time they enter the
representative investor’s information set.
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I cannot hope to survey the literature adequately. I can only cover a few of the closest related

papers.

2.1. Jumps in Asset Prices

The first literature that I build upon is the econometrics literature that studies jumps in asset
prices. Barndorff-Nielsen and Shephard (2006) develop the bipower variation estimator to disen-
tangle jumps and diffusive variation. Since then, several authors have shown that jumps are both
frequent and economically important, including Andersen, Bollerslev, and Diebold (2007), Boller-
slev, Law, and Tauchen (2008), and Ait-Sahalia and Jacod (2009b). The critical difference between
my estimates of jump variation and previous bipower variation estimates is that I measure ex-ante
jump variation, while previous papers measure ex-post variation. This difference is essential for
two reasons. First, my density characterization relies upon an ex-ante characterization. Second,
investors price ex-ante risk, and so my measure is a core object in pricing, while ex-post jump
variation cannot be priced. Other authors have argued they are not just statistically significant,
but economically as well. For example, we also need them to price derivatives, such as (Pan 2002;
Branger, Schlag, and Schneider 2008; Todorov 2010, 2011).

In Section 1.1, I discuss the literature that measures the magnitude of jump variation and the
jump intensities. I will not repeat that discussion here except to recall the twofold consensus. First,
asset prices contain a vast number of jumps. Jumps are likely infinitely-active, or, at a minimum,
have a very high intensity. Second, jumps constitute an economically and statistically significant
portion of the price variation.

I rely on these results in three ways. First, as motivation for the project. Second, as evidence
that my empirical results are reasonable. Third, and most importantly, I rely heavily on these em-
pirical facts in that I assume that prices have infinitely-active jumps. This assumption is somewhat
unusual, but not unique. For example, Gallant and Tauchen (2018) considers a similar class of
processes.

Gallant and Tauchen (2018) is arguably the closest related paper in the econometrics literature.
It is the only other paper that nonparametrically relates jump variation to the distribution of
returns. It is a fascinating paper and provides useful estimates for the intensity of jump processes.
However, their representation relies on Todorov and Tauchen (2014) and so can only handle small

jumps.

2.2. Representing Price Processes

The second literature that this paper builds upon is the stochastic process representation literature.
The main contribution to this literature is Theorem 4 and its corollaries. This theorem provides
general conditions under which jump processes are stochastic volatility variance-gamma processes.
The variance-gamma process is a Lévy process first introduced by Madan, Carr, and Chang (1998).

The first main time-change method for representing price processes is the Dambis, Dubins &

Schwarz theorem, (Dambis 1965; Dubins and Schwarz 1965). Theorem 4 is the jump analog of
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that theorem. Epps and Epps (1976) and various subsequent authors relate this time-change to
“business-time,” that is the speed at which information gets released into the market, creating the
mixture-of-distributions hypothesis.

Various authors partially extend these results to the jump case. Monroe (1978) shows that
any semimartingale can be embedded into Brownian motion, but did not construct this embedding
explicitly. Geman, Madan, and Yor (2002) shows that this embedding is not identified. More
recently, Todorov and Tauchen (2014) show how to embed the jump processes’ infinitesimal jumps
into an a-stable process using bipower-variation. Infinitesimal means, here, that the maximum
jump size approaches zero as the increment size approaches zero. By using an ex-ante measure of
jump variation, instead of an ex-post one like Todorov and Tauchen (2014) do, I can handle large
jumps as well.

In Section 4.4, I time-aggregate these continuous-time representations to discrete-time under
some additional assumptions. In doing this, I follow Barndorff-Nielsen and Shephard (2002) and
Andersen, Bollerslev, Diebold, and Labys (2003) who provide analogous results for diffusive pro-
cesses. Barndorff-Nielsen and Shiryaev (2010) further analyze these representations, providing a

useful survey of the current state of the literature.

2.3. Pricing Assets with Recursive Utility

The curvature in investors’ preferences, i.e., their risk appetite, implies a negative relationship
between expected returns and volatility. Consequently, many different papers estimate this rela-
tionship, and I cannot comprehensively survey this literature. Surprisingly, the empirical evidence
has proven much less conclusive than the theory. Bollerslev, Engle, and Wooldridge (1988b), Har-
vey (1989), Ghysels, Santa-Clara, and Valkanov (2005), and Lettau and Ludvigson (2010) find a
positive relationship between expected returns and volatility. Campbell (1987), Pagan and Hong
(1991), Glosten, Jagannathan, and Runkle (1993), and Brandt and Kang (2004) actually find a
negative relationship. Besides, many authors argue that the instantaneous correlation, which is
often called a “volatility-feedback” or leverage effect is negative, both in continuous-time (Bandi
and Reno 2012; Ait-Sahalia, Fan, and Li 2013) and in discrete-time (Engle and Ng 1993; Yu 2005).
This negative sign is likely the main reason why estimating the risk premium has proven difficult.
The researcher must disentangle two different relationships, risk-premia and volatility feedback,
with opposite signs.

Investors’ utility functions are not the only place their preferences can display curvature. Some
examples of models with curvature in their certainty equivalence functionals (CEF) include max-
min expected utility, (Gilboa and Schmeidler 1989; Epstein and Schneider 2003), models with
ambiguity aversion (Hansen and Sargent 2001; Klibanoff, Marinacci, and Mukerji 2005; Ju and
Miao 2012), and Epstein-Zin recursive utility (Epstein and Zin 1989; Duffie and Epstein 1992).
This additional curvature leads to additional risk-return trade-offs. Ai and Bansal (2018) show
premia for this curvature cause announcements to be priced differently. Hence, simple covariance-

based explanations for risk-premia break down.
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Arguably the closest related paper in the finance literature, Ai and Bansal (2018), is inspired
by a recent surprising stylized fact presented by Lucca and Moench (2015): the majority of the
equity premium occurs on the days around when the Federal Open Market Committee (FOMC)
makes it announcements. This paper extends Ai and Bansal (2018) by deriving risk-premia in
continuous-time for models with recursive utility and jumps. I then show that this additional term
is closely related to the jump volatility. This characterization shows that, in general, the theory

requires two pricing factors which move at high-frequency.

3. DATA GENERATING PROCESS

In this section, I describe the data generating process (DGP). Models of prices differ along two
different primary dimensions. They can be either continuous or discrete, and they can be either in
continuous-time or in discrete-time. I write down a continuous-time DGP with jumps and derive
the discrete-time representation from it. I also discuss the purely continuous DGP that my DGP

nests in parallel to provide a point of comparison.

3.1. Continuous-Time DGP

We know from Dambis (1965) and Dubins and Schwarz (1965) that continuous It6 semimartingales
are stochastic volatility diffusions. That is, for some drift, u(t), and diffusion volatility, o2(t), we

can represent the log-price process as
dp(t) = p(t) dt + o(t) dW (), (1)

where W (t) is a Wiener process. However, as mentioned in the introduction, asset prices are not
continuous processes, and so the models considered above cannot fully replicate the stylized facts in
the data. For example, such a process does not have fat-tailed distributions once you condition on
the volatility. This is because W (t) is a Wiener process, and so conditionally on o2() its increments

are i.i.d. Gaussian random variables.

Over the last few decades, various researchers have worked very hard to add jumps to these
models. The standard nonparametric way of doing is to assume that prices are It semimartingales.
This representation is quite general because it only requires that prices are semimartingales and each
of the components of the process have time-derivatives. The log-price being an It6 semimartingale
implies that the jump part is an integral with respect to a Poisson random measure. Let n be
a Poisson random measure with associated compensator, v. The function §(s,z) controls the
magnitude of the process in that it is a predictable function that multiplies the jumps. In general,

the triple (6, n,r) is not unique, which allow us to pick a particularly useful representation later.
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Definition 1. Jump-Diffusion DGP (Grigelionis Form of an It6 Semimartingale)

p(t) = p(0) + /0 (s) ds + /0 o(s) dVV () + /0 /X 5(s, ) 1{16(z, 5)| < 1}n — v)(ds,dz)  (2)
—i—/o /X(S(S,J:)l{Hé(x,s)H > 1}in(ds, dx)

To simplify Definition 1, I add an additional assumption:
Assumption Square-Integrable. The process, p(t), is locally-square integrable.

Assumption 1 is relatively innocuous in practice since an easy to verify sufficient condition is
that the returns themselves always have a conditional variance. Assumption 1 implies that the jump
measure has a predictable compensator. Although many high-frequency papers initially allow for
jumps that are so large no compensator exists, they almost always restrict themselves to processes
that satisfy Assumption 1 when they derive estimators. By assuming it now, I can simplify notation.

I also assume without loss of generality that p(0) = 0, giving

p(t) = /Otu(s) ds + /Ota(s) dW (s) + /Ot /X 8(s,z)(n —v)(ds,dz). (3)

I now assume without loss of generality that n is a standard Poisson random measure. In other
words, for each open set A C X, [, §(t,x) dx is the intensity of the Poisson process with magnitude
x € A. Hence, § completely controls the process’s dynamics.

This representation is quite general and can handle a great variety of different price processes.
However, it is rather intractable, and not identified. For each time ¢, d(¢,-) is a function of x.
In other words, for each t, we must estimate an infinite-dimensional object using at most one
realization. Also, it is not obvious how to time-aggregate this representation, i.e., parsimoniously

map it to discrete-time.

3.2. Discrete-Time DGP

Before I relate the discrete- and continuous-time returns, we must know what a discrete-time return
is. The discrete-time return is just the change in, an increment of, the price process over some length
of time, say a day.” Throughout, I use subscripts to refer to daily objects, and functional notation
to refer to stochastic processes, I also adopt the convention that the time associated with a variable
is when it first becomes known to the investor, i.e., measurable with respect to the filtration induced

by the prices. For example, r; is the daily return on date ¢, while p(¢) is the log-price at time ¢.

Definition 2. Daily Return

ry = /t t dp(t). (4)

-1

5. Throughout, I focus on daily returns whose length I normalize to one, but there is nothing special about a day.
We could perform the same analysis over any discrete length of time.
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This return has a density — h — in each period given the available information at the end of
the day before — F;_1.

Definition 3. Daily Density
Tt ’Ft—l ~ h(rt|]-}_1). (5)

This predictive density fully characterizes the statistical risk that investors face. In particular,
any statistical measure of risk, such as Expected Shortfall or Value-at-Risk, is a statistic of this
density. As a consequence, this density is a primary object of interest in financial econometrics,
and economists have written thousands of papers modeling it and its statistics.

Daily returns are not very well-behaved objects in that they are unpredictable and their dis-
tributions vary substantially over time. Furthermore, we only observe one observation for each
h(ry| Fe—1). Since Fy—1 grows each day, h (r; | Fi—1) is a function-valued time-varying parameter.
Modeling such parameters is quite difficult, and so the literature has focused on representations
for h (r; | Fi—1) in terms of a well-behaved sufficient statistic for the dynamics, which I denote x,
e.g., Engle (1982), Bollerslev (1986), and Nelson (1991). The most common choice for z; is some
measure of volatility.

They use x; to separate h (r; | F;—1) into three parts. The first — xz; — is well-behaved and
predictable and hence easily forecastable. The second is noise as far as prediction is concerned with
some density — f. It affects the risk investors face but not the density’s dynamics. The third part
— (G — is a process governing x;’s dynamics.

Both f and G are fixed across-time, and G is simple if we chose x; well. This gives
n Fit (| Fr) = [ 0|0 dG (o Fima), (6)
t

replacing the question how should we model h (7, | F;—1) with three related questions. What should
we use for ;7 What should use for f? What should we use for G7

For example, consider the following simple stochastic volatility model. As is standard, it uses
volatility o7 as x;. Here the return is a Gaussian innovation with stochastic volatility — o7, and

so f is a Gaussian distribution. The o? follows an AR(1) process in logs with persistence p and
2

innovation variance o.

Definition 4 (Simple Stochastic Volatilty Model).

re ~ orN(0,1) (7)
log (atz) = plog (af_l) +0,N(0,1) (8)

Now that we have a discrete-time DGP, we can define what I call the realized density.

Definition 5 (Realized Density).

RD; = f (r¢| x) (9)

T=xr
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Just as the realized volatility, RV;, is the particular value of the volatility that realizes in a
given day, the realized density, RDy, is the conditional density that realizes that day. For example,
in Definition 4, the realized density is f(r; | x;) = f(r¢ | o?).

The realized density is useful because it separates the dynamic and static parts of the process. I
provide conditions under which high-frequency data identifies RD, data by providing an estimator
for it in Section 5. Once we have RD;, we only need to model GG. In practice, this is much simpler

than modeling h (r; | Fz—1) directly because x; is usually well-behaved.

4. MODELING JUMP PROCESSES

In the previous section, I claimed that the most common choice for a sufficient statistic for the
dynamics is some measure of volatility. Moving forward, I construct a new measure of volatility.
This measure, unlike various realized measures in the literature, is an ex-ante measure. This

distinction is fundamental to representation I construct below.

4.1. Jump Volatility

In the continuous-time data generating process of (1), I implicitly defined the instantaneous diffu-
sion volatility o2(¢). It is the integrand in that representation. However, there is an equivalent
representation going back as far as Merton (1973) that is more useful for our purposes. This rep-
resentation gives 02(25) its interpretation as an instantaneous variance; 0'2(t) is the appropriately
standardized variance of the diffusion part of the process over a shrinking interval. (I use superscript

D to refer to the diffusion part of the process.)

Definition 6 (Instantaneous Diffusion Volatility).
1 2
of = RE [[p”(t+2) —p" ()] | 7| (10)

One key subtlety of this definition is that we are only using the information available before
time ¢. Variances are forward-looking operators. This subtlety is not essential in the diffusion case,
and so the literature has not stressed it. In the jump case, however, it is fundamental.

The key beneficial feature of volatility is that it time-aggregates in a straightforward way. In-

tuitively, the daily volatility is just the integral of the high-frequency volatility.

Definition 7 (Integrated Diffusion Volatility).

t
o? :—/ o?(t) ds. (11)
t—1

This aggregation property is precisely what Barndorff-Nielsen and Shephard (2002) and Ander-
sen, Bollerslev, Diebold, and Labys (2003) use to develop the Realized Volatility estimator for o?.
The goal moving forward is to construct a sufficient statistic for the jump dynamics that also has

this aggregation property.
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To do this, I define the jump wvolatility — ~*(t). A volatility is a variance, and so we can
construct the jump analogue to Definition 6. I substitute the diffusion part of the prices — p”(t)
with the jump part — p”/(t). In other words, I define the instantaneous jump volatility as the local

variance of the jump part — p”’(t).

Definition 8 (Instantaneous Jump Volatility).

. 1 2
20 = SB[+ ) - p’ 0 | Fe] (12)
The integrated jump volatility is defined in the obvious way.

Definition 9 (Integrated Jump Volatility).

t

V2= / 7% (s) ds. (13)
t—1

We can also define v%(¢) in terms of Definition 1. The jump volatility is the time-derivative of

the predictable quadratic variation of the jump part of the process.

Theorem 2 (Jump Volatility and the Predictable Quadratic Variation). Let p(t) be an Ito semi-
martingale satisfying Assumption Square-Integrable, then the following holds where (p”)(t) is the
predictable quadratic variation (angle-bracket) of p” (t):

t t
= [ s [ ] S atdnds) = 070 - @)~ 1), (14)
t—1 t—1Jx

The are three main advantages of v%(#) and 77 over the jump part of the quadratic variation.
First, since jump processes are not absolutely continuous, there is no ex-post analog to ~*(t).
We cannot take the derivative of the quadratic variation like we can differentiate the predictable
quadratic variation. Second, by conditioning on ~?(¢), I construct a closed-form nonparametric
continuous-time representation for p(¢) in Section 4.3. I do this without any truncation, Todorov
and Tauchen (2014) need to truncate all of the jumps above a shrinking threshold in order to
derive their results while using an ex-post measure. Third, as I show in Section 9, v*(¢) controls
risk premia. This result is intuitive because risk-premia are ex-ante objects. As a final advantage,
both 72(t) and 77 are identified. I show this by constructing consistent estimators for them in

Section 5.

4.2. Static Jump Processes (Variance-Gamma Process)

In the next section, I construct the static model that my model reduces to when there are no
dynamics. It will also be the integrator in the general case. I start with a simple jump process
where the locations of the jumps are Poisson distributed, and the magnitudes are i.i.d. Gaussian

variables and then take limits to construct the general case.



Jumps, REALIZED DENSITIES, AND NEWS PREMIA 13

Define N(t) as the process that determines when p”(t) jumps, i.e., N(t) — N(t—) = 1 if and
only if p(t) jumps at time ¢.

Definition 10. Location Process

N(t)=>_1{|]p’(t) —p’(t-)| > 0} (15)

Let r(t) == {p”(t) | N(t) # N(t—)} be a process that controls the jump magnitudes. Note, x(t)
is not a Wiener process, as its variance does not depend on the length of the interval. It is just an
ordered collection of N(0,1) random variables, one for each ¢. In this case, the jump part of the

price process has the following relatively simple form:

p’(t) =D w(s)IN(s) = N(s—)]. (16)

s<t

The variability in (16) arises from two places: the number of jumps and their magnitudes. Since
we are in a time series context, the number of jumps before some time ¢ and their locations contain
the same information. In this case, we can rewrite the jump volatility as follows using the law of

iterated expectations:

N(t+A)—N(t)

1 1
2 g 2 .
77 = Jim <E [Ipisa — pel’| 7] = lim <Eniia) ne z; Var(r(t))|Fo, N(t + A) — N(1)
(17)
We can then use (16) to simplify this expression.
v = lim —E[N(t+ A) — NO)|E[k(t)"] = —A = 1. (18)

A0 A A

To put (18) into words, the variance of the jump process is the mean of the intensity multiplied by
the variance of the magnitude and rescaled appropriately. This characterization holds in general
if the intensities and magnitudes are independent. I am combining the variation from the jump
locations and the jump magnitude into a single parameter. If we change either the intensity of the
jumps or the variance of the jump magnitudes, the variance of p”/(¢) changes in precisely the same
way. This irrelevance is useful because the intensity and magnitude functions are not identified.

The jump volatility, on the other hand, is.

One obvious generalization of (16) is the compound Poisson process. These processes are com-
prised of the sum of finitely-many independent Poisson processes with different intensities/magnitudes.
This representation does not work for our purposes. The variation I use to identify the jump volatil-
ity comes from the data’s infinitely-active jumps. A compound Poisson process can have at most

finitely many jumps in any finite interval because N (t) must converge.

However, this problem no longer affects our results if we consider the limiting case when N (t) —
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0o, We must model «(t) properly for the p(t) to remain square-integrable.® In particular, we cannot
have infinitely jumps of magnitudes greater than any fixed € > 0 in a finite interval otherwise the
jump will diverge. Consequently, we must shrink the size of the increments towards zero as we let
N(t) — oc.

One common pure-jump process — the variance-gamma process — is an infinite-activity “com-
pound Poisson process” with arbitrarily small Gaussian-distributed summands. My model for the
jumps reduces to this if it does not have any dynamics. The option pricing literature often uses the
variance-gamma process in its models. For example, European option prices are available in closed
form, (Madan, Carr, and Chang 1998).

A gamma process — I'(t) — is a process with gamma distributed increments, and a variance-
gamma process is a Wiener process time-changed (subordinated) by a gamma process. Equivalently,
a gamma process is a pure-jump Lévy process where the jumps that lie in an interval [z, z + Ax)

are Poisson distributed with intensity z ! exp(—z)Az for any x and A small.

Definition 11 (Variance-Gamma Process).
Variance-Gamma(t) .= W (T'(t)) (19)

Throughout this paper, I exclusively use the standard variance-gamma process, which is the
variance-gamma process whose increments are mean zero with all the scale parameters equal to
one.” The exponential distribution is a special case of the Gamma distribution. (Take a Gamma
random variable and set all of its scale parameters equal to one.) If we consider the special
case of a standard Wiener process time-changed by a gamma process with rate=1 exponentially-
distributed increments, we get a standard variance-gamma process. I use the symbol L(t) to refer
to the standard variance-gamma process because the increments of this process are Laplace random
variables.

In order to understand why the increments are Laplace-distributed, consider the following char-
acterization of a standard variance-gamma process. A Laplace distribution is as a Gaussian distri-
bution with random variance, where the random variable is exponentially distributed. The v/2 in
the expression is an adjustment to convert the standard deviation into a scale parameter. In other

words, we have the following characterization of the Laplace density:

z ~ L(mean = 0, variance = 1) <= z ~ %N (0,1), 0% ~ exp(1). (20)

N

This is the discrete analogue of Definition 11. Each increment of a variance-gamma process
has two sources of variation: the number of jumps, which “is” exponentially distributed, and the
magnitudes, which are Gaussian distributed. This characterization is not quite accurate because

exponential random variables are real-valued, not integer-valued. The number of jumps cannot be

6. Just letting p(¢) be an ordered collection of N (0, 1) variables does not work.
7. I introduce the notion of a standard variance-gamma process here to facilitate exposition because it aggregates
in ways that the general case does not.
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exponentially distributed.

However, one way to characterize a Poisson process is as a process where the waiting time
between jumps is exponentially distributed. This characterization is well-defined because the inter-
vals’ lengths take positive real values, and it returns us to the initial discussion of a variance-gamma

process as a “compound Poisson” process with an infinite intensity.

4.3. Jump Process Representation Theorem
4.3.1. It6 Semimartingales

Having defined the DGP, I state the first primary result. Recall the simplified Grigelionis form of

the semimartingale, (3):

o(®) :/Otu(s) ds—l—/ota(s) dW(s)+/0t/X§(s,:n)(n—u)(ds,dw). (21)

We can use the variance-gamma processes and the jump volatility discussed above to simplify the
representation for the jump part of the process. To do this, I introduce some empirically-innocuous
assumptions that are not entirely standard in the literature.

I need the jump part to have infinite activity. In other words, we need at least one jump in
every finite interval. This assumption implies two results. First, it implies that we do not need to
keep track of the probability that there are no jumps in a specific interval, and second it identifies
72(t). If we consider an interval without jumps, we obviously cannot estimate 72(¢) because we

have no variation to identify it with.
Assumption Infinite-Activity Jumps. The process, p(t), has infinite-activity jumps.

Assumption Infinite-Activity Jumps might sound sounds very restrictive at first and contradicts
the compound Poisson assumption often used in the literature. However, in practice, it is rather
innocuous for two reasons. First, the literature is essentially unanimous in arguing that jumps are
quite common in the data as discussed in Section 1. Besides, standard variance-gamma processes
are limits of compound Poisson process. Consequently, as long as we have a sufficient number of
jumps, the representation will work well in practice. I discuss this further in Section 4.3.3.

The last assumption requires jump times to be unpredictable.

Assumption No Unpredictable Jumps. There does not exist any stopping times 7 such that

the event p(7) # p(7—) is contained in the information set F,_.

Having set out the assumptions, I state the main theorem. I will later prove a more general
proposition, Theorem 4. However, I have already described the environment sufficiently to make
the result understandable. By stating the result that will likely be used in practice, it is easier to

see where I am headed.

Theorem 3 (Locally Square-Integrable It6 Semimartingales as Integrals). Let p(t) be an Ito semi-

martingale satisfying Assumptions Square-Integrable, Infinite-Activity Jumps, and No Unpredictable
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Jumps. Then we can represent p(t) as

t t 1t
p(t):/0 w(s) ds—l—/o o(s) dW(S)+\/§/@ v(s)dL(s). (22)

Proof. We can replace the jump part of (3) with an integral with respect to the standard-variance

gamma process where the root jump volatility is the integrator using Corollary 4.1. O

At each time, I am replacing the function, §(t,-), with a single scalar 4*(¢). In addition the
integrator is switched from a compensated Poisson random measure, (n—v), to a standard variance-

gamma process, £(t). This greatly simplifies analysis, as (¢, -) is not identified, while 72 (t) is.

4.3.2. Time-Change Representation

The proof of Theorem 3 relies on Corollary 4.1, which I have not yet proven. In practice, Theorem 4
is the main result. The other results, such as Corollary 4.1, are straightforward implications of it. I
prove this theorem now. Theorem 4 is a time-change representation for jump processes and hence
is closely related to the time-change representations in the diffusion case. Consequently, I start by
recalling those results.

The validity of diffusion representation for general continuous processes is ultimately implied by
the Dambis-Dubins-Schwarz theorem, which shows that any continuous martingale time-changed
by its predictable quadratic variation is a Wiener process, (Dambis 1965; Dubins and Schwarz
1965):

PP W ((pP) (1)) - (23)
(I use an equals sign with an £ above it to refer to equality in law. The right-hand side of (23)
evaluates the Wiener process at the random-clock determined by (p”(t)).)

The crucial difference between the jump part and the continuous part of a semimartingale is
that the variation in the continuous part comes from variation in magnitudes, while the jump part
has two sources of variation: the magnitudes and the locations. Intuitively, the Dambis, Dubins,
and Schwarz theorem separates the variation in any continuous martingale into a predictable part
(the volatility) and i.i.d. innovations. By doing this, the martingale becomes a sum of appropriately
scaled independent random variables. In other words, it is a “central limit theorem.”® One method
of proving standard central limit theorems is deriving them from this result.

In the jump case, though, the dynamics are more complicated. Not only do we have variation
in magnitudes, but also we have variation in the locations, or, equivalently, in the number of the
jumps. When we take the infill asymptotics, both of these sources of variation are still present.
In other words, a jump martingale is a sum of a random number of random summands. If the

number of summands is geometrically-distributed, various geometric-stable central limit theorems

8. Technically, this result is a law of large numbers, not a central limit theorem because the convergence here is
almost sure instead of in law.
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tell us how the sum behaves as the expected number of summands approaches infinity, (Mittnik
and Svetlozar 1993; Kozubowski and Svetlozar 19941).

I can generalize the Itd6 semimartingale assumption in Theorem 3. I only need to be able to
represent the prices as integral with respect to a Poisson random measure. In particular, the p(t)’s

characteristics do not need time-derivatives.

Theorem 4 (Time-Changing Jump Martingales). Let p’(t) be a purely discontinuous, martingale
satisfying Assumptions Square-Integrable, Infinite-Activity Jumps, and No Unpredictable Jumps
that can be represented as H % (n — v) where H(t) is a predictable process, n a Poisson random

measure, and v its predictable compensator with Lebesque base Levy measure.

Then p” (t) time-changed by its predictable quadratic variation is a standard variance-gamma
process. In other words, p’ (t) £r {(p"H(@®)).°

The proof of this theorem is in Section A. I present the intuition here. The first result we
must establish is that the jump locations and magnitudes are conditionally independent. Thank-
fully, the Poisson random measure representation implies that the location and magnitude risk are
independent given JF;_.

I condition on the number of jumps and show that the magnitudes are a continuous process
in that space. Thus, I can apply the Dambis, Dubins & Schwarz theorem there, which results
in a time-changed Wiener process. The standard representations further imply that each hitting
times for each open set of magnitudes is a compound Poisson process. We can time-change these
locations by their predictable quadratic variation, getting a standard Poisson process. However,
since the times between jumps for a Poisson process are exponential random variables, by keeping
careful track of how the exponential time-changes aggregate, we get that the time-change coming
from the locations is a standard Gamma process. The predictable quadratic variation of p(t) is the
composition of quadratic variation arising from each of two time-changes. Therefore, the original

process is a time-changed standard variance-gamma process.

Time-changed results are not particularly intuitive, and so we would like an integral represen-

tation as well. So we can assume that p(t)’s characteristics are absolutely continuous.

Corollary 4.1 (Jumps Processes as Integrals). Let p’(t) be a Ité semimartingale satisfying As-
sumptions Square-Integrable, Infinite-Activity Jumps, and No Unpredictable Jumps. Then p’(t) =

% f(f ~v(s)dL(s), where L is a standard variance-gamma process.

Corollary 4.1 is completely analogous to how we can represent continuous martingales as stochas-
tic volatility diffusion as shown in Dambis, Dubins, and Schwarz theorem by assuming the relevant

characteristics are absolutely continuous.

9. Note, the equality here only holds in law unlike in the Dambis, Dubins & Schwarz theorem, where it holds
almost surely.
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4.3.3. Processes with Finite-Activity Jumps

Arguably the most controversial assumption I make is Assumption Infinite-Activity Jumps. Various
authors have argued that we have a large, but finite, number of jumps in each period. The natural
question is what happens to the distributional result in this case? In any given interval, the price
process is a point mass at zero if it does not jump. If the price does jump, we can represent it as
done above. In other words, the ex-ante distribution over each interval is a mixture of a point mass
at zero and a Laplace distribution where the mixing weights are the probability of the jump in that

interval.

Corollary 4.2 (Time-Changing Finite-Activity Jump Martingales). Let p’(t) be a purely discon-
tinuous martingale satisfying Assumptions Square-Integrable and No Unpredictable Jumps that can
be represented as H x (n — v) where H(t) is a predictable process, n a Poisson random measure,
and v its predictable compensator with Lebesque base Levy measure.

Then p'](t)t time-changed by its predictable quadratic variation is a mizture of the 0 process —
0o — and the standard variance-gamma process where the mizing weights are the intensity of the

jump process.

Corollary 4.2 implies that Theorem 4 is the limiting case of a finite-activity process as the
intensity approaches infinity. Consequently, Theorem 3 approximates the true DGP well if the

intensity is relatively large.

4.4. Deriving the Realized Density

Having derived the continuous-time representation in Theorem 3 and proved it the previous section,
I now solve the time-aggregation problem and derive the realized density. Barndorff-Nielsen and
Shephard (2002) and Andersen, Bollerslev, Diebold, and Labys (2003) simultaneously derived the
realized density when prices have continuous paths, although, they did not call it thus. In particular,
they show that if volatility and prices are correlated, o7 is a sufficient statistic for the dynamics
under some technical conditions. They further show that conditional on the integrated diffusion
volatility, the daily density of the return is Gaussian in the pure diffusion case.

This conditional Gaussianity separates the daily return distribution into a well-behaved compo-
nent as a function of the volatility and a Gaussian noise component. To relate it to the previous

discussion, we have the following decomposition for h (r; | Fz—1) if we ignore the drift:

ze=[fi o2(s)ds] = IV (07 /tt a*(s) ds)' (24)

-1

f(7”t|0t2):f

I now discuss the realized density in the jump case. In this case, the return has two parts: dp(t) =
o(t)d(t) + [y 6(t,x)(n — v)(dz,dt). Conditional on the values of o%(¢) and §(t,-), the jumps and
diffusion parts are independent. Consequently, returns are the sum of two conditionally independent
components. Densities of sums of independent components are convolutions of the summands’

densities. We know, as discussed above, that the diffusion part is a Gaussian density whose variance
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equals the integrated diffusion volatility. Hence, we only need to develop a parametric expression
for jump part.
Let £(0,z) refer to the Laplace density with mean zero and variance z, and recall that * is the

standard convolution symbol. Then the following discrete-time representation holds.

Theorem 5 (Realized Density Representation). Let p(t) be an Ité6 semimartingale satisfying As-
sumptions Square-Integrable, Infinite-Activity Jumps, and No Unpredictable Jumps. Let o%(t) and
72 (t) be semimartingales whose martingale components are independent of the martingale compo-

nents of p(t). Then

RD; = N </ti1 u(s)ds, /t; o?(s) ds) x L (o, /til 72 (s) ds> , (25)

and the predictive density is

hrlFi) = [ RDi,of )G (o 7| Fina). (26)

2
Ht,0 57t

The intuition behind Theorem 5 is as follows. If v%(#) was constant, we could pull it out of
~2
the integral without affecting the distribution: ftT_l V2 dL(s) £ ’f/’;

of the standard variance-gamma process are Laplace distributed, the second component is just

ftt—1 dL(s). Since increments

L£(0,1). Consequently, conditionally on 77 |, we have a Laplace distribution with the specified
variance. The v/2 term arises because the scale of a Laplace distribution is the square root of one-
half the variance. We can replace the constant assumption on the volatilities with the independence
conditions between the martingale components to recover the general case.

To recover (26) from (25), I integrate the realized density out using the G that controls their
dynamics. In practice, we likely want to model G directly. This model has the same form as the
various stochastic volatility / GARCH type models in the diffusion case. Many of those models
can be extended straightforwardly to the jump-diffusion case because the stylized features of the
7# and o} are quite similar, as I show in Section 8.

The primary assumption that I added in Theorem 5 was the independence between the mar-
tingale components of the various terms. We need this assumption to justify the time-aggregation
because we need the marginal and conditional distributions given the volatilities of p(¢) to coincide.
In other words, I restrict the leverage effect but do not assume away all dependence. The volatilities
and drift can be arbitrarily related.

To go into a more detail, since the jump part is purely discontinuous, it is orthogonal to the dif-
fusion part. In other words, if we condition on the one process, the other process is still a martingale.
Since we are integrating with respect to Brownian and Laplace motions the martingale property
is sufficient to imply that the integrators of all predictable components of the representation are
independent. To aggregate we need to separate the volatilities from the martingale components.

Consequently, we must assume martingale components of the volatilities are independent of the
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martingale components of p(t).

The predictable relationship between the drift and volatilities is entirely unrestricted as is the
relationship between the volatilities themselves. As long as it takes a positive amount of time
for feedback from the volatilities to affect the level of the prices or vice-versa, this assumption is
satisfied. Besides, the observed correlation between the martingale parts is close to zero at high
frequency as noticed by Ait-Sahalia, Fan, and Li (2013), who call it “the leverage effect puzzle.”
There is some evidence that this is an artifact of the estimation procedure, and so I leave to future
work the optimal way of bringing it into my framework. One way to do this is by keeping track of
this correlation and using tools similar to those developed by the above paper and by Neuberger

(2012) and Kalnina and Xiu (2017) and making Gaussian and Laplacian conditioning arguments.

5. HKESTIMATION

I now construct estimators for o(¢) and 7?(¢) and their daily analogs. As is standard, the data do
not identify p(t), and so we cannot estimate it. The estimator I propose for o%(t) is adapted from
Jacod and Rosenbaum (2013). T show that their estimator is still valid under my slightly more
general assumptions. The estimator for v2(¢) is completely new. It was not even a priori obvious
that v°(¢) is nonparametrically identified. In particular, I develop a consistent estimator for »(7)
for any fixed 7.1 Also, this is the first consistent estimator for any instantaneous measure of jump

dynamics.

5.1. Assumptions

To start, I fix some notation and state some assumptions. The way that the instantaneous volatil-
ity estimators work is by taking an appropriately defined average over an increasing number of
increments over a shrinking interval. In other words, for a given index — n, we have a triangular
array of increments. To make the notation even more complicated, we have both a true D.G.P.
with time-varying volatility and an approximate D.G.P., whose volatility is locally constant.

This setup implies we must keep track of both triangular arrays as we take limits. I adopt the
notation used in Jacod and Protter (2012) for the most part. Specifically, I use Al'p to refer to a
increment 4 in process p(t) of length A", and I take limits with respect to n, that is {Al'p} is a
triangular array of increments of p(t).

The assumptions that I use are very similar to the standard ones used in the literature. When

possible, I simplify them using the representation theory I have developed thus far.

Assumption HL. 1. u(t) is locally bounded.
2. o(t) is cadlag (or caglad).

3. () is cadlag (or caglad).

10. In general, much of the theory that I develop can likely be extended to stopping times, but I leave that for
future work.
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Assumption 4 is essentially Jacod and Protter’s (2012) assumption H. The assumption on the
jumps is slightly more general and more straightforward. I also slightly modify the literature’s

assumption SH. (Here w indexes the underlying probability space €2.)

Assumption SHL. We have Assumption HL and there is a constant A such that the following
hold for all ¢t and all w:

16t w)[| < A, [lo(t,w)]| < A, [lr(tw)ll < A.

These two assumptions have a close relationship, Assumption HL is the local version of As-
sumption SHL. Assumption HL only restricts the local behavior of the function, while Assumption
SHL make the equivalent conditions globally. Since convergence in the Skorokhod topology only
depends upon local behavior, if we can prove consistency under the one assumption, the estimator
automatically converges under the other assumption as well. This result implies that in the proofs
below we can assume SHL without loss of generality. To make this statement explicit, we have
the following lemma whose proof is in the appendix. The arrow with £-s above it refers to stable
convergence in law, which is the type of convergence necessary for confidence intervals to be valid

in this setting.

Lemma 6 (HL implies SHL). If an [t6 semimartingale p(t)"gp(t) under Assumption SHL,
then p(t)" 2>p(1‘) under Assumption HL, and the equivalent statement holds for convergence in
probability.

To reduce the amount of notation, I adopt the following notational convention from the literature

so that the processes are well-defined over the entire line, not just the place we are estimating them:
1€Z,i<0 = Alp=0. (27)

I am setting the processes equal to zero outside of the relevant window.
To estimate the instantaneous volatility, I must approximate o?(7—) and 7?(7—). Thus, we
need to choose a sequence of iy, k, A, , so that we are averaging the variation, either squared or

absolute, over smaller and smaller intervals to the left of 7. Consider the following interval:
I(i,n) =[(i — kn, — 1)A™, (i — 1)A"]. (28)

If we choose a sequence i — 7, the interval approaches 7 from the left. Also, as p(t) is one-
dimensional, the driving Wiener and variance-gamma processes are one-dimensional without loss

of generality.

5.2. Instantaneous Volatility Estimators

Having specified the framework, I state the estimators themselves. The intuition behind their

convergence is that we are averaging the volatilities over shrinking intervals that approach 7 from
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the left. As long as the infill asymptotics imply the number of increments being averaging over
is increasing faster than the length of the interval is shrinking we precisely estimate the volatility.
Since we are estimating the process from the left, we are approximating the value before 7, i.e., we
are estimating v*(7—).

I first derive an estimator for o%(7—). There are few such estimators in the literature that do
this, including Mancini (2001) and Jacod and Rosenbaum (2013). They do this by that noting
that estimating the integrated diffusion volatility — <pD >(t) — is straightforward. We can use
the integrated volatilities sample analog. In particular, we can use time-derivative of @(t) to
estimate o2.

The main difficulty in practice is separating the jump and diffusion variation. I do this by
truncating away the large increments, where large is in terms of an asymptotic rate. Asymptotically,

this eliminates large jumps, and the small jumps do not affect the asymptotic value.

Theorem 7 (Estimating the Instantaneous Diffusion Volatility). Let p(t) be an Ité6 semimartingale
satisfying Assumptions HL, Infinite-Activity Jumps, and Square-Integrable. Let k,, A" satisfy
kn, — 00 and koA, — 0, and let 0 < 7 < oo be a deterministic time. Define i, =i — k,, — 1. Let
cl(A")1/4 <o <= caV/A" for some constants c1,cy and v} — 1. Then

kn—1
. 1 S n n n n
U?n(kn,r—,p) = o A mz_:o ) |Ainp‘21{‘Ainp} <wvr'} B)g?(T—)- (29)

One might think a similar estimation strategy would work to estimate %(t), i.e., form an
estimator of <p‘] >(t) by truncating away the small increments and take the time derivative of the
resulting object. In fact, Jacod and Protter (2012, 256) show that this estimator would converge to
zero in their proof of the validity of their estimator for o?(¢). Intuitively, by considering a specific
time 7, we implicitly condition on 7. Doing this reduces the variation in the locations, and shrinking
the window eliminates variation from large jumps. If we also truncate away variation arising from
the small jumps, we have no variation left to identify the jump volatility.

Over a fixed interval the quadratic variation of jump processes and diffusive processes are of
the same asymptotic order as we shrink A, (Jacod, Podolskij, and Vetter 2010). If we consider
shrinking intervals, this is no longer the case. Instead, it is the absolute value of the stochastic
volatility Laplace and diffusive processes that have similar asymptotic properties. '' The absolute
value of a standard variance-gamma process, |L|(t), is a well-behaved object, just like the absolute
value of a Wiener process, |WW|(t), and they vanish at the same asymptotic rate: v/A".'? In addition,
the limAnH()!A?np(t)! contains both 7?(7) and (7).

Theorem 8 (Estimating the Instantaneous Absolute Volatility). Let p(t) be an It6 semimartingale
satisfying Assumptions HL, Infinite-Activity Jumps, and Square-Integrable. Let k,, A™ satisfy
kn — 00 and k,vVA™ — 0, and let 0 < 7 < 0o be a deterministic time. Define i, =i — k, — 1.

11. It is an interesting open question to what other jump processes this result extends.
12. As an aside, neither of the processes are martingales. They are semimartingales.
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Then the following holds, where erfcx = %L [ exp(—s?) ds:?
! P 7(r-) o(t-)
A o= E[N(0,1 )+ - erfc < > 30
. W Z| mPl = E[N(0,1)]o(7—) NG “\ S (30)

As long as 0?(t) and v2(t) are locally constant around 7, we can use the implied parametric
form to compute the limiting value as a function of 02(7) and 7?(7). The expression on the right
of (30) is the mean of the convolution of [N (0,0%_)| and |£ (0,7%_)|.

We can combine this convolution and o?(7) to estimate (7). To do this, we must weight the
difference between the absolute population moment as a function of 7(7) and the absolute sample
moment. In general, any convex weighting function of the differences will work. I use the absolute

value of the difference between the two values because it works well in simulation.

Theorem 9 (Estimating the Instantaneous Jump Volatility). Let p(t) be an Itd semimartingale
satisfying Assumptions HL, Infinite-Activity Jumps, and Square-Integrable. Let k,, A" satisfy
k,, — 00 and knvV A" — 0, and let 0 < 7 < 0o be a deterministic time. Define i, =1 —k, — 1. Let
on(T—) converge in probability to o(r—). Let v(7) > 0 and g be strictly-increasing, convex, and

continuous, then the following holds:

kn—1 fox ((Tn(72)

1 7 erfex ( S ) .
(kp, 7—,p) == argming [ |——— g A, p| —E|N(0,1)|G,(1—) — -,
/( p) g’y g kn\/—n :0‘ nt p‘ ’ ( )’ ( ) 9 ’7( )

5.3. Implementation

We now have an estimator for the instantaneous jump and integrated volatilities. The difficult
part is estimating the instantaneous volatilities. The integrated volatilities are their averages. In
practice, two issues affect the analysis. First, we must remove market microstructure noise. To do
this, I adopt the pre-averaging approach argued for in Podolskij and Vetter (2009, Eqn. (3.9)). To
do this, I define the function:

9(z) = (1 - (22 — 1)?) (z >=0)(z <= 1). (32)

The pre-averaged data is the rolling average of the true data:

Kn—1
B 1 e m—1 n
Di, = Z g ( ) AL LD (33)

kiny/ [y 92(s)ds m=1 Fon

The ¢ function is there to correct for the error introduced by the pre-averaging.

13. This function, erfcx, is the scaled complementary error function. It is a reparameterization of Mill’s ratio. Most
scientific programming suites provide efficient, numerically-stable implementations.
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If kK x 1/ VA", we likely achieve the optimal rate in the presence of noise, but the noise leads
to an asymptotic bias in most cases, (Jacod, Podolskij, and Vetter 2010). To avoid this, I set
Kp = LWJ. This rate is useful because we can apply the estimators directly to the pre-averaged
data, and it is not obvious exactly what bias exists when estimating the instantaneous absolute
variation.'* Tset § = 0.5, which is a values recommend by Hautsch and Podolskij (2013), and works
well in my simulations.

I apply Theorem 7 to estimate o(7—). To do this, we need to choose vy to be converge to
1, I'let v = 1. More importantly, I need to choose the truncation threshold v{. We need v}
to asymptotically upper bound the absolute diffusion part. In the literature, it is usually chosen
vl = co(7—)AY where 5(7—) is a preliminary estimator for o and c¢ is a number of standard
deviations chosen by the econometrician.

The tails of the Laplace and Gaussian random variables are very similar. The Gaussian
density is proportional to exp(—x2/2) in the tails, while the Laplace density is proportional to
exp(—x/+v/2). Distinguishing these two is quite difficult in practice. Setting v} oc A4, does
not work particularly well in this scenario as I show in Section 6. On the other hand, the
law of the iterated logarithm tightly bounds the deviations of a Gaussian variable, and so I use
of = V35 (r—) VA /Tog(loa(1/A,))

To form a preliminary estimator, I start with the 1.25 times bipower variation and then iterate
until convergence. We need to start by overestimating the volatility to avoid incorrectly setting
o(T—) = 0 since that would truncate away all the increments. It is worth noting that this volatility
estimator relies on neither 7?(7) nor the qualitative properties of the Laplace representation.

In addition, we must choose k,,, where 1/k, controls the length of the interval over which the
volatilities are treated as approximately constant. Theory tells us that k, — oo and k,vVA" — 0,
I choose k, = 1000 + (A™)Y/* because that seems to work well in the simulations with market
microstructure noise.

Now that I have an estimator for 0?(7—), I need an estimator for the local absolute value. I
plug the pre-averaged data into (30). It is worth noting that the theory I develop is for the no-noise
case; the particular implementation likely is not affected by the noise, but that has not been proven.
An interesting extension for future work would be to extend these results to cover the noise case as

well and to figure out the various biases arising there.

5.4. Integrated Volatilities

We want to estimate discrete increments of the volatilities. To do this, we use the obvious proce-
dure and average the instantaneous estimators each day. The diffusion estimator defined this way

coincides with standard diffusion estimators in the literature up to edge effects.

Theorem 10 (Consistentcy of the Integrated Estimators). Let p(t) be Ité semimartingale satisfying
Assumptions HL, Infinite-Activity Jumps, and Square-Integrable. Let kn, A™ satisfy k, — oo and

14. The transformation creating p;, does not affect the volatilities but does affect the mean.
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knvAp — 0. Define i, =i—ky,— 1. Then

t
~2 . 1 P

~2 2
[ T —— Z g (knutnap) — o (S) dS, (34)
#i, € [t — 1,1] i<t t—1
and ‘
1 P
~2 ~2 2
B T a—— Z Y (kn7tn7p) — Y (‘5) ds. (35)
#in € [t —1,1] t—1<tn<t =1

Proof. T am averaging estimates of o(¢) and 7 (¢). Averages of consistent estimators are consistent
by the law of iterated expectations, Jensen’s inequality applied to the square, and Chebyshev’s

theorem. 0

Implementing the discrete volatility estimators is straightforward, I take the daily averages of
the instantaneous volatilities. To estimate the realized density, I plug the daily estimates into (25).
Since this function is uniformly continuous, as long the volatilities are bounded away from zero,

the resulting estimators should work well.

6. SIMULATIONS

One key advantage of my representation is that it can be simulated from easily as long as we
can simulate the instantaneous volatilities. Perhaps the most commonly used such model for the
diffusion volatility is the Cox-Ingersoll-Ross (CIR) process. (A diffusion model whose volatility
follows a CIR process is known as a Heston model.) One nice feature of this model is that the
volatility itself has volatility, but we only need to simulate one process. The qualitative features of
the jump and diffusion volatilities are quite similar, and so I adopt this model for the jump volatility
as well. Once we have the volatilities, we can simulate the price as the sum of the diffusion and

jump parts directly.

6.1. Simulation Data Generating Process

The Cox-Ingersoll-Ross (CIR) process, also known as the square-root process, has the following

form:
dx(t) = k(0 — (z(t)) + w\/x(t) dW (1), (36)

where 0 is asymptotic mean, x is the mean-reversion rate, and w is a scale parameter.

I simulate a CIR process for both 7?(#) and o?(t) using the full-truncation scheme of Lord,
Koekkoek, and Van Dijk (2010). The parameters are given in Table 1. Note, the asymptotic
standard deviation for a CIR process equals @. I chose the specific parameter values displayed
below to match the discrete-time dynamics of the price processes.

Once I obtain () and v%(¢), I plug them into the following continuous-time DGP:

dp(t) = o(t) dw (t) + L

i dL(t). (37)
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Table 1: Volatility Parameters

20w?
K

o2(t) 500 x 1075 1 210 x 1072 4.60 x 1074
Y2(t) 500 x 1075 1 2.10x 1073 4.60 x 1074

Parameter 0 K w

This gives me a sequence of prices, which I use to estimate the volatilities.

6.2. Simulation Results

I focus on the daily volatility results below as they are sufficient statistics for all of the daily

12" To provide a comparison, I also report the

objects, which is what I use in the applications.
truncation-based estimator used by Li, Todorov, and Tauchen (2017), (LTT), the bipower estimator
of Barndorff-Nielsen and Shephard (2004) and Podolskij and Vetter (2009), (Bipower), and bipower
estimators computed on 5 minute data (5 Minute). In the jump case, the estimators above do not
converge to 77 but rather to the jump part of the quadratic variation. However, since 77 is the
predictable quadratic variation, these estimators should still be asymptotically unbiased for 77.

I first estimate the model using the estimation procedure described in Section 5 without the
microstructure correction described there. Figure 2 reports the results when I sample at the one-
second frequency. Some of the jump variation estimators are not easy to see on the plot because 1

truncated them to zero.

Figure 2: Simulation Results without Microstructure Noise
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As can be seen in Figure 2, the estimators in the literature for o7 are badly biased upwards
in finite-samples when the jump activity is high. This bias even holds in simulations without
market microstructure noise at the one-second frequency, which gives approximately 24 thousand

observations per day. This bias for o7 causes the literature’s estimators for 77 to be severely biased

15. I report continuous-time results in Section E.
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as well, contrary to the theory.'®

Table 2: Relative Simulation Error without microstructure
(Average over 250 days)

Observations E[(6i—01)?] E[(5:—7+)?]
per Minute Efo] E[v:]

Bipower LTT 5 Minute Proposed ‘ Bipower LTT 5 Minute Proposed

~ 2 0.37 0.40 0.40 0.46 0.72 1.01 0.80 0.72
~ 12 0.38 0.40 0.42 0.16 0.70 1.01 0.83 0.21
~ 60 0.40 0.43 0.45 0.05 0.68 1.01 0.87 0.07
~ 180 0.39 0.41 0.43 0.07 0.69 1.01 0.85 0.07

The proposed estimators, however, perform quite well at this frequency. Table 2 reports the
average root mean square errors of a year’s worth of various estimators. As can be seen from this
table, the proposed estimators outperform the other estimators in the literature by approximately

an order of magnitude in this simulation.

Figure 3: Simulation Results with Microstructure Noise
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The data has substantial market microstructure noise. To mimic its effect, I follow Christensen,

Oomen, and Podolskij (2014) and consider a scenario where we observe 7;, + u;, and u;, follows
wi, = Pui,—1 + €, €, S N(0,w?(1 - B%). (38)

I set w? = 1.00 x 1071° because that is the value obtained from the data using the jump robust
noise variance bipower-type estimator of Oomen (2006): = =t % Dt 1<inin—1 | AT p||AT _pl.
I set 5 = 0.77, which is the value used in Christensen, Oomen, and Podolskij (2014). They set it

to match the trade sign of the S&P 500 futures contract on the day of the 2010 Flash Crash.

16. This bias likely explains why I find significantly higher jump variation than Christensen, Oomen, and Podolskij
(2014) do, which is the other paper to use pre-averaging and ultra high-frequency returns to measure jump variation.
Because they use bipower variation to measure the jump proportion, their estimators for the jump proportion are
likely highly-biased downwards.
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I now add the market-microstructure correction described in Section 5. I also set § = 0.5
(the constant for the pre-averaging correction) and £ = 1000 (the constant for the instantaneous
estimator), which are the values used in the actual estimation. I chose these values because they
appeared to work well in the simulated data. As we can see in Figure 3, the estimators are slightly
biased upwards in this scenario, especially the estimators for o?.

Even though they are slightly biased upwards, the proposed estimators perform reasonably well
in practice. This claim does not hold for the other estimators in the literature. In Table 2, 1
report the mean-square error of the previous estimates average of a year’s worth of simulations.
Here 1 have approximately 1/2 the average error in estimating o7 and 1/5 the error in estimating
77. Again, although the jump variation estimators in the literature are not consistent for 47, they

should be asymptotically unbiased. In (large) finite-samples they are both biased and inconsistent.

Table 3: Relative Simulation Error
with microstructure
(Average over 250 days)

Observations E[(Gi—0+)?] E[($:—74)°]
per Minute Elo] E[v¢]
Bipower LTT 5 Minute Proposed | Bipower LTT 5 Minute Proposed
~ 2 0.74 0.41 0.42 1.00 1.01 1.01 0.83 0.65
~ 12 0.82 0.46 0.46 0.36 1.01 1.01 0.82 0.41
~ 60 1.11 0.69 0.69 0.36 1.01 1.01 0.84 0.21
~ 180 1.58 1.06 1.06 0.85 1.01 1.09 0.81 0.18
7. Data

The methods developed in this paper require high-frequency data. For the analysis to be interesting,
we need a dataset that faces a dense stream of relevant news. I chose SPY, (SPDR S&P 500 ETF
Trust), which is an exchange-traded fund that mimics the S&P 500, which I obtain from the Trade
and Quotes (TAQ) database at Wharton Research Data Services (WRDS). The S&P 500 is arguably
the most important index of financial activity. It is likely the most closely watched equity index
and several heavily subscribed index funds (including SPY) track it directly. Consequently, the
economics and finance literature has studied it extensively, often using it as a proxy for the market.

Since this paper only use one asset, and SPY is one of the most liquid assets traded, we can
essentially choose the frequency at which we want to observe the underlying price. In order to
balance market-microstructure noise, computational cost, and efficiency of the resultant estimators
I sample at the 1 second frequency. The data used starts in 2003 and ends in September 2017.
Since the asset is only traded during business hours, this leads to 3713 days of data with an average
of =~ 24 000 observations per day. The dataset takes up about 4.4 GiB of memory. It is also worth
noting that SPY is by far the most liquid exchange-traded fund, especially in recent years, reducing
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the effect of market microstructure such as bid-ask spreads, bounces, and rounding error.

This market microstructure causes the asset to fail to be a semimartingale in practice. Thank-
fully, a substantial literature has developed to deal with precisely this issue. The two leading
methods are sampling rather sparsely, for example at a 5 minute frequency as Liu, Patton, and
Sheppard (2015) argue for, and pre-averaging, where one takes appropriately weighted averages of
the price over small (shrinking) intervals. We need to separate the jump volatility from the diffusion
volatility, and so we must sample much more finely than once very 5 minutes. This requirement
arises because the only information the estimators use to separate the jumps and diffusive compo-
nent come from the tails, and tails by definition are times without much data. Consequently, any
deconvolution procedure we use here is inherently low-powered.

Consequently, I preprocess the data using the pre-averaging approach as in Podolskij and Vetter
(2009) and Ait-Sahalia, Jacod, and Li (2012). This procedure is known not to affect the consistency
of the estimation procedure. The basic idea is rather simple. We average the price over a small
interval to remove the noise. If we pick the rates at which we shrink the interval to appropriately
balance averaging away the noise and estimating the instantaneous variation, the estimators will
be consistent even in the presence of noise.

In the analysis for news premia, I predict log-returns on SPY, which I compute using the high-
frequency data. I include the overnight returns, and so the return on day 7 starts at the close of

business on day 7 — 1 and ends at the close of business on day 7.

8. VoLATILITY: EMPIRICS

I separate this empirical part into three subsections. The first section characterizes the static
properties of the volatilities. The second characterizes their dynamic properties. In particular,

it shows that both volatilities are highly persistent, displaying long-memory. The third section

o2 . . 9

introduces a new measure of jump variability — — ’LQ — in order to isolate the effect of 77 in the
t It

presence of o7. This ratio is a measure for the proportion of the investors’ new information driven

by news.

8.1. Statics

The results concerning o7 are broadly consistent with previous work on the topic. Since this paper
introduces 77, the stylized facts regarding its features are new. Thankfully, in practice, o7 and 7
have very similar dynamics, and so much of the intuition regarding o7 can be directly translated
to 77

As can be seen in Figure 4, the volatilities are very closely related; their correlation coefficient
equals 0.93. As one would expect from previous volatility measures, they both significantly increase
during crises/recessions. Interestingly, o7 spiked more than -7 during the Financial Crisis and seems
to spike more during recessions.

Figure 5 plots the two log-volatility distributions along with their joint distribution. As can
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Figure 4: Root Volatilities
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be seen from the graph both marginal distributions are skewed right, and the joint distribution is
just as skewed as the marginal densities. It is worth noting that being skewed right means that
the volatilities are more likely to take on abnormally large values than take on abnormally small
ones. Volatilities usually spike during crises, and so the distributions are skewed in a direction
that increases the investors’ risk relative to an unskewed distribution. This fact is particularly
noteworthy as these are distributions of log-volatilities, and taking the logarithm already removes

a large amount of skewness.

Figure 5: Log-Volatility Densities
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A few of the original realized volatility papers, (Andersen, Bollerslev, Diebold, and Labys 2001;
Andersen, Bollerslev, Diebold, and Ebens 2001), argue that realized volatilities are approximately

log-Gaussian. One might expect this to continue to hold in this case. The black lines in Figure 5 are
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Gaussian densities fit to the data for comparison purposes. At a qualitative level, the log-volatilities
are roughly log-Gaussian. They are slightly skewed and slightly kurtotic, even after taking logs,

which we can also see in Table 4.17

Table 4: Volatility Summary Statistics

. ~2 . . 2

of v i log(o})  log(h)  log(0f +47) log (i)
Mean | 4.47 x 10~° 3.68 x 107° 0.56 —10.91 —10.64 —13.15 —2.17
]S)tjl' 1.52x 107% 9.12x 107° 0.12 1.13 0.98 1.03 0.22
Skew. 15.65 11.81 —0.18 0.71 0.55 0.72 —0.95
Kurt. 376.55 250.23 2.92 4.12 3.81 4.10 4.88

We are interested not just in the univariate dynamics, but also their relationships. We know
from Figure 5 that the two volatilities move together. To investigate this further, Table 5 reports
the correlations between the various volatility measures and daily excess returns.

Table 5 also includes an indicator — 1{FOMC}; — for days when the Federal Open Market
Committee (FOMC) releases its announcements. As discussed in the literature review, much of

the previous literature on the effect of news on asset prices has focused on the effect of FOMC

announcements.
Table 5: Volatility Correlations
. . ~2
of i o+ ozt H{FOMChL

o? 1.00 0.74 0.96 —-0.29 —-0.11 0.01

o 0.74 1.00 0.89 —-0.10 -0.13 0.06
o7 + 7 0.96  0.89 .00 —0.23 -0.13 0.05

2

s -0.11  -0.13 —0.13 1.00  0.12 0.05
oF T4

Clearly, o and ~7 are highly positively correlated. Table 5 also reports the correlations between

the logarithms of the parameters above because Pearson’s correlation coefficients only measure

2
o477
volatility measures. Note, this is possible because it is a non-linear transformation of 77 and o7 +~7.

Interestingly, 1{FOMC}, is positively correlated with all of the volatility measures even though

is weakly negatively correlated with the other

linear relationships. On the other hand,

they are not all positively correlated with each other. The standard negative contemporaneous
relationship between volatility and returns also holds.

Since the volatilities are closer to log-Gaussian than they are to Gaussian, Table 6 reports the
correlations reported in Table 5 with the volatilities measured in terms of their logarithms.

The signs of the relationships are the same in both tables, but the magnitudes are larger in

Table 6. This result should not be too surprising given the evidence above. The volatilities’

17. The only reason that the diffusion density might appear to be skewed left is that it is plotted sideways.
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Table 6: Log Volatility Correlations

log(c?) log(+7) log(of+17) log ( va;%) re;  1{FOMC}

of
log (07) 1.00  0.90 0.97 ~0.50  —0.18 0.06
log (77) 0.90 1.00 0.98 —0.08 —0.14 0.09
log (07 +77) | 097  0.98 1.00 -029  —0.16 0.08
log () | 029 —0.08 029 1.00 0.13 0.04
t t

distributions are closer to log-Gaussian than they are to Gaussian.

8.2. Dynamics

Having considered the data’s static properties, I now consider the dynamic properties starting with
the univariate case. Throughout, I focus on the log-volatilities because they behave are closer to
Gaussian as shown in Section 8.1, and so the true conditional expectations are likely closer to
approximately linear. I first replicate the standard stylized features for the diffusion volatility and

show that the jump volatility behaves similarly. I then perform a joint analysis.

8.2.1. Measuring the Persistence

Figure 6 plots the volatilities’ autocorrelation functions. Both series are extremely persistent.'®

We can also see that both series have a similar univariate autocorrelation structure.

Figure 6: Autocorrelation Functions
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Since the series are so persistent, one might wonder if they have a unit root. Table 7 rejects
this hypothesis. In particular, the standard Augmented Dickey-Fuller test rejects at any reasonable
level of significance, (Dickey and Fuller 1981). Since the volatilities do not have a unit root, one
might think that they are short memory processes, that is, their autocorrelation functions decay
geometrically. Perhaps less surprisingly given Figure 6, the Kwiatkowski—Phillips—Schmidt—Shin
(KPSS) test also rejects this hypothesis, (Kwiatkowski et al. 1992).

18. The gray bars are the standard Bartlett bands, i.e., confidence sets for the null of independent and identically
distributed data.
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Those readers familiar with the empirical volatility literature should not find this result too
surprising. The diffusion volatility’s long memory is a key stylized fact in the literature (Andersen,
Bollerslev, Diebold, and Labys 2003). Perhaps more surprisingly, the jump volatility also has long
memory. Table 7 reports estimates for the long-memory coefficient, (d), using the Geweke Porter-
Hudak (GPH) estimator (Geweke and Porter-Hudak 1983). The smoothed periodogram estimator

developed by Reisen (1994) gives almost identical results.

Table 7: Persistence Statistics

A2
log(a7) log(v7) ~ log (03 i%g)
‘ p-value
ADF Test 1.90 x 1075 361 x107% 8.01x 1071
(Unit-Root Null)
KPSS Test < 1% < 1% < 1%
(Short-Memory Null)
‘ statistic
1st-Order Autocorrelation 0.85 0.83 0.26
Fractional Integration 0.57 0.66 0.47
Coefficient (d) (0.45, 0.79) (0.50, 0.82) (0.31, 0.64)

Notably, the point estimates for d are in the infinite-variance region (d > 1/2). These estimates
imply the volatility itself has an infinite unconditional variance. ! However, we cannot reject the
hypothesis that the d < 1/2 in any of the cases.

8.2.2. Univariate Dynamics

Table 8 reports independent AR(1) regressions on each volatility to gain some high-level under-
standing of the dynamics. Both series are quite persistent and predictable. However, we still have
economically significant innovations. In other words, the autocorrelation and innovation variance
are both high.?

I now consider univariate autoregressive models for both series. I use Schwarz Information
Criterion (SIC) to select the lag order.”! This is not the ideal thing to do as it assumes away the
long-memory that I just demonstrated. However, it still is useful to understand the short-memory
dynamics of the two series. The two series both exhibit substantial autocorrelation as shown above,
with the AR coefficients declining slowly. SIC chooses 9 lags for both series. The two series are

both quite predictable in terms of R? as well. The regressions chosen by SIC give an R? of 76 %

19. Having an infinite unconditional variance does not imply that the volatilities have an infinite conditional variance.
A process can be locally square-integrable even if has infinite variance. Prices exhibit this behavior.

20. This section’s results come with the significant caveat that I am using estimated regressors and do not correct
for this in my statistical results. For the most part, the evidence is so overwhelming the conclusions should not be
affected, but, in some of the more borderline cases, it may be an issue.

21. Other selection criteria such as Akaike information criteria (AIC) choose similar models. As one would expect,
AIC chooses a few more lags.
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Table 8: Univariate Autoregressive Models

| log o} log 7

| AR(1)
Intercept —-1.63 (—1.82, —1.45) |-1.78 (—-1.97, —1.59 )

0.85 (0.83, 0.87) 0.83 (0.82, 0.85)

R2 2% 69 %

| AR(BIC)
Intercept —0.68 (—0.88, —0.48) |—0.62 (—0.81, —0.42 )
Lag 1 0.54 (0.51, 0.58) 0.46 (0.43, 0.49)
Lag 2 0.15 (0.11, 0.18) 0.17 (0.13, 0.21)
Lag 3 0.06 (0.02, 0.09) 0.05 (0.02, 0.09)
Lag 4 0.07 (0.04, 0.11) 0.08 (0.04, 0.11)
Lag 5 0.04 (0.00, 0.08) 0.09 (0.05, 0.13)
Lag 6 0.00 (—0.03, 0.04) 0.01 (—0.02, 0.05)
Lag 7 —0.00 (—0.04, 0.04) 0.01 (—0.03, 0.05)
Lag 8 —0.00 (—0.04, 0.04) [—0.02 (—0.05, 0.02)
Lag 9 0.08 (0.04, 0.11) 0.08 (0.05, 0.12)
R2 76 % 74 %
Inn9vat10n 0.31 0.95
Variance

for log(o7) and 69 % for log(77). These numbers are likely higher than that found in the literature,
which are often in the neighborhood of 40 % to 50 %, because I am doing a better job at separating
out the diffusion and jump volatilities, (Bollerslev, Patton, and Quaedvlieg 2016, 8). Effectively,
my variables have less measurement error than is commonly used in the literature. In addition,
volatility appears to be more predictable during the Great Recession, which is a large portion of

my sample.

8.2.3. Joint Dynamics

The joint analysis starts by considering whether the two volatility series Granger cause each other.
Standard tests conclusively reject the null of no-causality in either direction. The sum-of-squared
residuals (SSR) test for log(7?) Granger-causing log(o?) with one lag returns a x?(df = 1) value of
29872 Conversely, the SSR test for log(c?) Granger-causing log(v7?) with one lag returns a y?(df = 1)
value of 398. These results are robust to the number of lags chosen and to the specific version of the
test. The tests overwhelmingly reject no-causality in every case. In other words, adding information
about the jumps helps us to predict the diffusive variation, and vice-versa.

To make this operational, consider a vector autoregression (VAR). Here, the Schwarz Informa-
tion Criterion (SIC) chooses 6 lags. Table 13, which is in Section F, reports the results. Table 9

reports the results for a VAR(1). The results for the more general specification are consistent with

22. Since a x2(df = 1) is the distribution of |N (0, 1)|?, this is equivalent to a t-static of 17.27.
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these results. The results are consistent with the Granger-causality results above. Both volatil-
ities depend on the lags of both volatilities. The coefficients for diffusion volatility are larger in

magnitude, however.

Table 9: VAR(1) Results

| Intercept log (07 ;) log (77 ;) Innovation Variance R?

logo? | —0.84 0.56 0.38 0.33 74 %
logv? | —1.80 0.34 0.48 0.27 2%

The correlation between the innovations is 0.63. Since both the unconditional correlation and
the innovation correlation between the two series are high, there appears to be a shared component

that drives a large amount of the variation in both series.

8.3. Jump Proportion

The previous sections showed that the volatilities share a component that drives a large portion of
each of their variations. We would like to isolate the effect of the jumps and examine its dynamics

directly. (This will be quite important when we consider the pricing implications.) To do this,

define the jump proportion — — which the previous sections briefly alluded to but did not

i
o +7i
investigate in detail.

Figure 7: Time-Varying Jump Proportion
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2
To understand 027—%2, Figure 7 plots its variation over time. Its mean and the Great Recession
t t

are plotted for reference. Figure 7 also displays the rolling average to visualize the series’ low-
2
frequency variation better. Clearly, 027—%2 has substantial low- and high-frequency variation.
t t

,th ’
o7

Figure 8a plots s histogram. The red line is a kernel density estimate, and the back line
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Figure 8:
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2
is a Gaussian distribution fit to the data. As we can see, UQLLY?’S density is roughly log-Gaussian.
t t

Since Figure 7 plots daily data, and the dataset spans several years the graph is at too low a
2+ > and 1{FOMC},; on the same
graph in the most interesting sub-period in the data: 2008-2009. As we might expect given previous
work, such as Andersen, Bollerslev, Diebold, and Vega (2003), Faust et al. (2007), and Beechey
and Wright (2009), — 22 often spikes when the FOMC makes its announcements. However,

resolution to be easily comprehensible. Hence, Figure 9 plots

2
P,
varies significantly more than 1{FOMC},; does. If you regress 62172 on 1{FOMC}, the resulting
t t

coefficient is 0.50 with associated t-statistic equal to 7.90. Even though this relationship is highly
statistically significant, The R? from this regression is only 0.78 %.

Figure 9: 2+ > versus 1{FOMC},

1.0 A

0.8 1

® L
” ® ! ‘
0.6 p | — 1{FOMC},
' 1 — @

0.4

0.2

0.0 1

Mar-2008 Sep-2008 Mar-2009 Sep-2009



Jumps, REALIZED DENSITIES, AND NEWS PREMIA 37

8.4. Realized Density Evaluation

In Section 6, I showed you that the estimators work well in simulations. It would be useful to know
if they worked well in the data as well. Besides, perhaps the assumptions justifying the integrated-
Laplace representation do not hold in practice. Thankfully, Theorem 5 is a valid conditional density,
and we can consistently estimate the conditioning variables. Consequently, techniques developed

to analyze conditional densities work well here.

Figure 10: Realized Density Evaluation
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Each day, I take the ;? and % and compute ﬁﬁt. I can draw from @t easily, and so I compute
its inverse-CDF through simulation. I then apply this inverse-CDF to the demeaned daily return.
This procedure jointly evaluates the density representation, the time-aggregation procedure, and
the estimation of o2 and 7.

As can be seen in Figure 10, the PIT is close to uniform. The only deviation is in the far right
tail. I did not correct for the skewness in the data when I computed RD;. We can see this in the
graph. However, the deviation is not large, and for most risk-measures, we are far more concerned
about the left-tail. I am estimating that tail almost perfectly. It is also worth noting that I needed
to assume this symmetry in the discrete-time representation, but not the continuous-time one. The
deviations here do not invalidate that representation at all. If we look at the Figure 10, we can see
that the far right tail is also measured relatively well. It is only the 80th to 95th percentiles that
I am missing. Furthermore, Figure 10 the deviations are most perfectly uncorrelated across time.

This lack of correlation implies the densities dynamics are estimated quite well.

9. NEwS PrREMIA: THEORY

Discontinuous prices or information flows that this paper considers break the derivation of CAPM-
style results where risk-premia are instantaneous covariances with marginal utility. In particular,
risk premia are no longer proportional to the integrated diffusive covariation between prices and
stochastic discount factors. For example, in Ai and Bansal’s (2018) world, we have an announcement
SDF (A-SDF) whose covariation with returns is also priced, while in Tsai and Wachter’s (2018)

world, it is the covariation between the SDF and returns during extreme events that matters.
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This section unifies these two theories by decomposing the covariation between the prices and the
investor’s pricing kernels into their predictable and unpredictable components. In particular, it
shows that risk premia have two components in the general case. Contrary to the discussion in
Tsai and Wachter (2018, 31), both of these terms are, appropriately-defined, covariances, and so

we would expect returns to exhibit a factor structure.

9.1. Preferences

To avoid introducing more notation than necessary, I characterize the investor’s decision problem
over a short period A and take A — 0. Following Ai and Bansal (2018), I adopt the intertemporal
preferences represented as in Strzalecki (2013). Let V' (t) be the representative investor’s value
function at time ¢, and u(-) be the associated flow utility over current period consumption — C(t).
Let k denote the rate of time-preference. I assume that x is constant for notation convenience, but

this can be easily generalized.

Definition 12 (Certainty Equivalence Functional).

t+A
V(t):/t+ u(c(t))dt+I[/>t+AeXp(—/€(s—t))u(C’(s))ds

J—“t_] . (39)

I immediately specialize to the form given in Definition 12, which is (Ai and Bansal 2018,
observation ii, p. 1401). Most of the results still go through in the general case, albeit with a loss

of interpretability. In this case, investors preferences are represented as
V()| F] = ¢~ (E[p(V (1) | F]), (40)

for some strictly increasing function ¢. Preferences having this form include the recursive utility
of Kreps and Porteus (1978) and Epstein and Zin (1989) and the second-order expected utility
of Ergin and Gul (2009). If ¢ is the identity function, preferences are time-separable. They also
cleanly characterize the problem at hand. Ai and Bansal (2018) show that these form of preferences
lead to an announcement premium if and only if ¢ is concave.

I make filtration, F¢, explicit in (40) to emphasize that certainty equivalence functionals map
information sets to utility. In particular, Z is just the expectations operator, E [- | F;_], if preferences
are time-separable.

Note, if V'(¢) is continuous, it is predictable, i.e., V(t) € F;_, then

IV Fe] = ¢~ (ElG(V (1) | Feo) = ¢~ (o(V()E[L| Fio) = 67 (@(V(H)) = V(E).  (41)

In other words, the recursive utilities can be appropriately reparameterized in terms of a time-
separable preferences. This validity of this reparameterization is why Tsai and Wachter (2018,
Theorem 5) find a single risk price is sufficient even in the presence of recursive utility as long as

the underlying shocks are continuous.
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To make this more concrete, consider the example of Epstein-Zin preferences. I adopt the nota-
tion used in Bansal and Yaron (2004). Let p denote risk aversion and v denote to the intertemporal

elasticity of substitution (IES). Then Epstein-Zin Utility can be represented as:

1—1/4 ﬁ
] (42)

U, = |07V 1 exp(—#A)E [Utlgg]ft] =

The formulation in (42) is not in the form given in (40), and so is not particularly useful for
1-1/¢

our purposes. Define V; := U, and reparameterize (42) as
1-1/v
1-1/4 =1/ =

Let ¢(V) = 174 V1% and U(C(t)) = C ¥ then we have: 23
1-1/4 t ;

Vi = [u(Cy) + exp(—kA)¢™ (E[) (Visa) | F))] - (44)

9.2. The Investor’s Portfolio Optimization Problem

To fix intuition, consider a one-period version of the model. The investor can continually trade
between time 0 and time 1 and consumes her wealth at time 1 as displayed in Figure 11. At some
time 7 € (0,1), a news item is released, on which the investor can trade. The investor’s preferences

satisfy the following utility recursion for any time 7 > .
Vi(Wy) = u(Cy) + ¢ (B (V2 (W2)) | Fi)).- (45)

Assume that the investor has access to three assets. 1) A risk-less asset, 7, that pays off
1 unit in every period, and whose price equals 1 because investors do not discount the future.
Essentially, it is a costless storage technology. 2) An asset, (;, whose payout, R¢, is announced by
the news release. 3) An asset { whose payout R realizes as a Brownian motion, i.e., its variance
and mean are both proportional to the length of the remaining interval. Figure 11 displays the
timing. I maintain the convention where the time subscript refers to when the variable first enters
the investor’s information set.

Since this is a finite-horizon problem, we can solve it by working backward. At time 1, all

uncertainty has been resolved, and the representative agent eats all of her wealth:
Vl(Wl) = ’LL(Wl) (46)

Let 7 < t < 1, then the investor can trade & and the risk-less asset x;. However, since the news

23. The constant in front cancels between ¢ and ¢!, and so does not affect the level of utility. It is there to ensure
that ¢ is an increasing function regardless of the values of the parameters.
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Figure 11: Timing
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was already released, we know the payout of (;, and so it is a risk-free asset. Consequently, the
value function equals

Vi(Wy) = max ¢~ (E[¢ (Vi (W) | Fi]), where Wy = Wy + (1 — t)(Re — 1)&, (47)
because she gets return 1 from the risk-less asset and R¢ from the risky asset over the course of the

entire interval. By substituting the constraint into the problem, and noting that V3 (W7) = u(W7),
this simplifies to

Vi(Wy) = max ¢ (B[ (u(Wi + (1 —t)&(Re — 1)) | Fi]) - (48)
The first-order condition is

0=E [¢(w(W1))u'(W1)(1 — t)(Re, — 1) | Fe] (49)
since the term arising from the derivative of ¢! is always positive.

The investor’s problem for some time ¢ in (0,7) has similar structure except now she trades
both assets.

ViW) = max ¢~ (E[p(V-(Wr)) | F)) (50)

W, =W;+ (RC — 1)@ + (T — t)(R& — 1)& (51)

Substituting the constraints into the problem gives

Vi(We) = max ™" (E[¢ (Vr (Wi + (Re = 1) + (7 = 1)(Re — &) | ). (52)

Taking first-order conditions with respect to the = for x € {(,£} and simplifying gives

0=E[¢' (V; (W) VI(W:) (Rs — 1) | F] -
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Consider some time immediately before 7, 7—, and some time right after 7, 7+. Then, substitute

(49) into (52) and consider the derivative with respect to &:%*
0=E[E[¢/ (V; (W:)) V](W:)| Fir] (d€)(Re — 1) | F~—]. (54)

Since £ is continuous, it is orthogonal to all discontinuous process, and so we can replace the

expectation with respect to 71 with an expectation with respect to 77:
0=E[E[¢'(V; (W:) Vi(W;) | Fee] (Re — 1) | Fr] (55)

Consequently, the investor only cares about the predictable part of the co-variation. In order for
the returns to have finite variances, this must be proportional to the length of the interval. Their
variance is proportional to (77) — (77) ~ 0. Hence, the Brownian asset ¢ is risk-less over short
enough intervals.

I substitute (49) into (52), and consider the derivative with respect to {;. The jump asset, &,

is not risk-less over short enough intervals:
0=E [E [¢/ (VT (WT)) V;(WT)(RC - 1)(dC) ‘ FT—] ‘-FT—] : (56)

We cannot pull R: outside of the inner expectation because it is not predictable, i.e., it is not
contained in the F,_ information set. Hence, there is no reason to expect the ex-post variation to
be proportional to the length of the interval.

To facilitate comparing the two equations, isolate the unpredictable variation in the SDF by

multiplying and dividing through by its left-limit, which we can pull through the inner expectation:

¢ (V, (W) V(W)
& (Vi (Wr)) Vi(W5)

(W, )E (R~ v | 7] | 7] 6n

Note, ¢'(Vo—(W,_))V/]_(W,_) is predictable, while d)fizl‘(/&g%:)_))‘;;v(;(v{&) is purely unpredictable.

9.3. Deriving the Asset-Pricing Equation

The market environment is mostly standard. We need a series of technical conditions that ensure

that preferences are reasonable and first-order conditions uniquely characterize the optimum.

Assumption. Market Environment
1. Both u and ¢ are Lipschitz continuous with Lipschitz derivatives.

2. u : R — R has strictly positive first-order derivatives, and ¢ is increasing with first- and

second-order derivatives that are bounded away from zero and infinity.

3. A representative investor prices all assets.

24. 1 am taking limits here with respect to time loosely here to provide intuition. I make the statements rigorous
in the theorems below.
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4. Consumption — C(t) — is an It6 semimartingale.

5. All of the stochastic processes do not contain predictable jumps.

The fourth assumption is the principal distinction from the setup in Ai and Bansal (2018).
Assumption 6 generalize their assumptions by allowing consumption to jump. I will discuss later
how my results slightly simplify if we require consumption to be continuous. The third assumption
is likely unnecessarily restrictive, most of the results in this section would go through in terms of a
marginal investor’s preferences. I make this assumption to simplify the exposition.

Consider an representative investor with preferences given by (40). She has access to a (poten-
tially infinite) vector of assets E(t) = &1 (t), . ... Assume for simplicity that she has no other sources
of income. Over some small length of time A, the investor’s problem is as follows. She enters into
the period with asset allocation Z(t — A), and prices are p(t).%” She need to solve for consumption
C(t) and an asset allocation Z(¢). The results are reported cum-dividend to avoid introducing even

more notation. The extension to the ex-dividend case is straightforward.?®

Problem 1. Consumer’s Portfolio Allocation

t+A
V(- 8)p0) = max [ u(Cls) ds+ 67 (E exp(-rA)o(V (E(0). (e + )| F])

B+ PO&G( - A) =D P1&() (59)

The continuous-time problem is the limit of Problem 1 as A approaches 0. The trade-offs are
slightly easier to see in the discrete-time problem. The investor must purchase consumption, C(t),
and assets, Z(t), at prices, P;(t), using wealth, >, P;j(t)=(t—A). Let P(t) = exp (—k(t)) p(t) be the
appropriately discounted price. We are interested in excess returns, not returns themselves. Then

we can derive the following result, where p(t) refers to the price.?”

Theorem 11 (Asset-Pricing Equation). Let Assumption 6 hold, prices be Ito semimartingales, and
the representative consumer face Problem 1 as A — 0. Assume preferences are such that optimal

consumption is strictly positive. Define

UP SV we) _ ¢'(V(W(t-)) V(W (1))
MO = Svwa—y MY = TRV O E ) Wee)
Then MUYF(t) is a purely discontinuous martingale, and for all stopping times T > t,°

P(t) = E [M()MYF(r)P(r) | 7] (61)

25. The timing notation may seem somewhat strange here because it maintains the convention used elsewhere in
the paper where time arguments denote when the objects first enter the representative investor’s information set.

26. Cum-dividend means before dividend. Assets here behave like Bitcoin or gold and never pay out dividends.

27. This is a generalization of Ai and Bansal (2018, Theorem 2) to allow for jumps in consumption.

28. I use the UP superscript because MYT is an unpredictable process.
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Conceptually, Theorem 11 is straightforward. Prices are semimartingales, and so we have a

pricing kernel — M(t) — that prices all assets:
P(t)=E [M(T)JS(T) ) ft} . (62)

However, M(t)xV'(W(t)). Instead, it has two parts: M(t), which reflects compensation for
consumption risk and MY (t) which reflects compensation for discontinuities in the investor’s

information set.

9.4. Deriving Risk Premia

The end of the previous section is essentially where Ai and Bansal (2018) stop. Section 10 estimates
risk premia, and so I must derive risk premia from Theorem 11. If prices were continuous, It6’s
formula lets us solve for the expected log-return in terms of the covariance between the M (t) and p(t).
However, the generalized It6’s formula in the literature that applies to general semimartingale does
not have a simple form in terms of covariances. To resolve this impasse, I derive a generalized [t6’s
formula in terms of predictable quadratic covariation, (integrated diffusive and jump volatilities)

that has the standard form but applies to jump processes.

Lemma 12 (An Ité’s Formula for the Expectation of a Square Integrable Semimartingale). Let
f be a twice-differentiable function and Z be a vector-valued semimartingale with locally bounded
predictable (Z)(t). Then the differential of f satisfies

@& [£(Z)| Fi| = B[f(Z0-) aZ()| 7] + L") d2)0) (63)

The assumptions and conclusion in Lemma 12 are both weaker than It6’s formula for continuous
processes. We do not need continuous processes, but the equality only holds in expectation. How-
ever, this is sufficient for our purposes as risk premia are expectations. Importantly, the convexity
correction has the same form as it does in the standard It6’s formula.

I now compute risk premia by applying Lemma 12 to the logarithm. Let m(t) := log(M(t)) and
mUT(t) = log(MYP(t)). Recall that throughout, p(¢) refers the log-price. Let P denote the price

of the risk-free asset.

Theorem 13 (Asset-Pricing Equation). Let the assumptions in Assumption 6 hold, P;(t) be an
Ité semimartingales, and the representative consumer face Problem 1 as A — 0. Assume that
preferences are such that optimal consumption is strictly positive. Then risk-premia for some asset

118
dPi(t)

" Pi(t-)

dPs(t)
_ﬂéﬂwﬂiz—ﬂmﬂhmﬂ@—ﬂmmmﬂ@' (64)

The cost of the assumptions’ generality is that Theorem 13 is rather abstract. To make the

representation more concrete, consider a few specializations. First, assume that preferences are time-

W(CW) 1,

separable and consumption is continuous. Then M7 (t) is identically one, and M (t) = IO
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dPi(t) _ dPs(t)

the envelop theorem. Consequently, E | 5 o)~ Pio)

CAPM model of Breeden (1979).

‘.7-}_} = —07,0p,. This is the consumption-

In addition, since m(t) is continuous, which is implied by «/(-) being a smooth function and C(t)
being continuous, jumps do not command a premium. This is because time-separability implies
mUP(t) is identically zero and so d(m, p” + p”)(t) + d(mVY p’)(t) = d(m,p").

If we allow for jumps and recursive utility, (64) generalizes Tsai and Wachter (2018, Theorem 5).
The key difference is that it is apparent that the second term is a covariance. Even in the presence
of jumps, risk premia can be split into a risk price and risk quantity. It is not immediately apparent
in Tsai and Wachter’s (2018) environment that their formula is a covariance, but as long as returns

. . . . . . . . . C
have finite variance, we can rewrite their expression as a predictable quadratic variation.?”

If we are in a world like Ai and Bansal (2018), where consumption is continuous and the envelop

theorem holds (which implies V/(W (t)) is a continuous process), (64) simplifies to

sz(t) _de(t) — dim I B mUP ,
5| ) pfu_)’ft}— dfm,p")(t) — d(m"” ") (0). (63)

If we further assume that high-frequency consumption movements can be ignored, i.e., u'(¢(t—)) =

u'(C(t)), we can combine the two terms using the law of iterated expectations.

aP() AP | ] ) SW)
. {th—) Pr(i-) ‘F ] - d< ¢'<v<w<t—>>>’p“>>' (66)

Again, we have a single risk-price and risk-premia equal —a?,\/(0? + 77);. Doing this is equivalent
to assuming that the market wealth portfolio is the only risk factor and ignoring movements in the

wealth-consumption ratio. However, as will be shown below, the data require a two-factor model.

We could instead assume that consumption is continuous and the envelop theorem holds, but
high-frequency movements in consumption cannot be ignored. In that case, the risk premia equation

" dP(t)  dPy(t)
Pi(t—)  Pr(t—)

E ]f} — —d(m,pP)(t) — dmUT, p")(t). (67)

In this case, we could isolate the effects of each of the two factors by estimating the risk-premia
as a bivariate function of o7 and 77. In that case, we could view the second term as a measure
of announcement premia, similar to how Ai and Bansal (2018) use the excess returns on FOMC
days. However, then the regressions done below imply that ¢ is convex because 77 predicts lower
risk premia once we condition in o?. Regardless, the data demand we have two factors that move
at high-frequency. They also require the news risk premium to be less than the diffusion volatility

premium.

29. This is implied by Lemma 12.
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10. NEwS PrREMIA: EMPIRICS

Recall the formula for risk-premia in the presence of recursive utility and jumps derived in Theo-

rem 13:

dP;(t)  dPy(t) B
£ [R(t—) B Py(t—) ’}—t—} = —d(m,p")(t) — d(m"" p”)(t). (68)

In general, we must to specify a full model for both m(t) and mY(t) in order to take (68) to the

data. There are two leading cases. One, make a CAPM-style approximation that assumes market
wealth is the only factor, i.e., V; = V(W;).?" In this case, we have

[ dP;(t) dPTf

o — GO | = (ot o)+ (69

because V (t) is perfectly correlated with p(¢). Two, assume that the news structure and underlying
productivity shocks are continuous as in Ai and Bansal (2018). Then V (¢) is a continuous process
and (m, p’) = 0. This gives

' P,
E |:sz(t) d rf

Pl(t—) P ‘ Ft—:| = /810-152 + /827152' (70)

10.1. Excess Return and Volatility: Contemporaneous Relationship

The question now facing us is how should we estimate (69) and (69). In practice, o7 ++7 and ~7? are
very heavily correlated, (89 %), and so regressing on them does not lead to robust results. Moreover,
interaction terms in those regressions are often significant. To isolate the effect of the jumps, I use

= i > instead of %2. To make the results more Gaussian and avoid the need for interaction terms,
1 report elasticities, i.e., I apply a log transformation. Hence, the preferred specification is

ray = o+ Brlog (of +77) + B2 log <2%22> + €. (71)
oy + 7
I report robustness results in Section D. The results in the other specifications either agree with
the main specification or are insignificant.
Consider the contemporaneous relationship between the volatility and the return. This sec-
tion starts by replicating the standard result that volatility and returns are contemporaneously
negatively correlated, (Lettau and Ludvigson 2010). The crucial difference between the results

reported here and those in the literature is that Table 10 splits contemporaneous relationship up

2
2+ Y
The analysis below uses the daily excess return, rx;, to make the results more easily comparable

into relationships with o7 4+ ~7 and with

with those in the literature. I construct rx; by taking r; and subtracting the log yield on the 10
year treasury bill, which is obtained from FRED. I annualize rx; (multiplied it by 252) to make

the results more interpretable. I use Newey-West heteroskedasticity and autocorrelation (HAC)

30. Under the assumptions in Assumption 6, this implies V; jumps since W, does.
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robust standard errors and report ¢-statistics in the square brackets. I use Bartlett’s kernel with
the optimal bandwidth, per Newey and West (1994).

Table 10: E [m?t ‘ o+ 2, i } (OLS)

oF i
Regressors Specifications
Itercent —4.55 .02 —317  —1.27
P [5.81]  [6.48] [-3.94] [-0.54]
—0.46 —0.39  —0.19
2 2
log (07 +17) [—5.58] [—4.12]  [-0.85]
2 1.65 1.13 3.91
log (U?ﬂ’;‘)) 5.81  [4.06]  [1.07]
: 0.29
log (o7 +17) log (7757 0.50]
R? 267% 1.61% 335% 3.42%

As can clearly be seen in Table 10, log(o? +97) and 7z, are strongly negatively correlated. This
is what the literature has found Brandt and Kang (2004) and Lettau and Ludvigson (2010). The
unconditional positive relationship between log(ggﬁfﬁ/g) and rx; is new, however.

Weighted least squares is more efficient than ordinary least squares if we choose the weights

appropriately. Section D reports weighted regressions that weight each datapoint by the inverse of
that day’s total volatility. This weighting is optimal up to unpredictable terms because o7 + 77
equals variance of the martingale part of p(¢) in expectation. This martingale part is the innovation
in (71). In order to deal with any residual heteroskedasticity, Section D continues to use robust
standard errors.

It is also worth noting that since the regressions are contemporaneous, the R?’s that Table 10
reports are reasonable. The volatility explains a notable, but small, part of the variation in the

excess return.

10.2. News Premia

The regressions in Table 10 are contemporaneous, and so they conflate risk premia and volatility
feedback effects. If we try to interpret the coefficients as measures of risk premia, we have the
classic endogenous regressors problem because the regressors and error terms are correlated.

Risk premia are forward-looking by definition, and so we must isolate the predictable variation
in the regressors. Intuitively, we want to regress returns on expected volatilities.?® The most
common way of handling endogenous regressors is using instrumental variables, and that is what I
do.

In particular, I use the lagged regressors as instruments. This procedure gives better estimates

S
Vi

5 are
o i

than regressing on the lagged volatilities directly for three reasons. First, o7 + +7 and

31. This is equivalent to regressing expected returns on volatilities, but we do not observe expected returns.
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~2

’tflf
or 1
away useful information. Second, the coefficients from these this regression conflate predictability

not AR(1) processes. Hence, regressing directly on o7 | +~7 | and unnecessarily throws

of the volatilities and risk premia. Consequently, they only identify the sign, not the magnitude
of the risk premia. Third, as discussed in Section 10.1, returns are highly heteroskedastic. Since I
consistently estimate o2 + 72, I can adjust for heteroskedasticity in the instrumented contempora-

neous relationship. It is not obvious how to do this appropriately if you regress rz; on o7 | +77

~2

It—1
and —————.
A e |

The lagged volatilities are valid instruments. First, they explain a large amount of the variation
in the regressors. I adopt an approximate heterogeneous autoregressive (HAR) specification to
2

choose lags used as instruments, (Corsi 2009). To be precise, I use o2 ; + 72, ~ Tl for

2 2
t—1 i
I €{1,2,5,25} as instruments. I report the results from the first-stage regressions in Table 16. The
— 2 —
R? for the a;iy? regression equals 14.63 % with an associated F-statistic of 248.07. The R? for
t t
the o7 + 77 regression equals 79.43 % with an associated F-statistic of 20140. Both of these are

comfortably within the strong instruments region. Second, they are predetermined. Consequently,
they are, by definition, independent of the date ¢ innovation. Innovations cannot be predicted.

I consider two specifications. The leading specification uses log(c? + ~7?) as my first regressor

~2
and log(at2 i#) as my second regressor. I also consider a specification with log(c?) as the first

regressor and log(o? + 77) as the second regressor.

Table 11: News Premia Estimates

Regressors Specifications
Itercent 295 -245 —504 327 295  2.32
P 6.61] [—5.12] [-0.58] [7.25] [6.07] [4.15]
0.24 0.14
log (7 +17) [6.61] [2.68]
22 —501 —4.15
log (U?ﬂf) [~5.86] [—4.93]
0.25 1.86
2
log(a'?) [6.53] [5.18]
: 023 —1.74
2
log (7) [5.40] [~4.53]

The question facing us is how do we interpret the coefficients reported in Table 11. If log(V})
is proportional to wealth and both consumption and wealth move at high-frequency, then the
coefficient on o7 + 7 measures risk aversion. The coefficient on cr?%,f measures the curvature of
the CEF as parameterize by ¢. Per the discussion in Section 9.4, this implies the CEF is convex,
and if investors have Epstein-Zin preferences they prefer late resolution of uncertainty.

Conversely, if consumption is the only factor and is continuous, the coefficient on log(c?) mea-
sures risk aversion. The coefficient on log(77) measures the curvature of the CEF. Here, though,
the sign on that term changes if we include log(c?).

The obvious question is why is this? This is likely because the univariate regression on 47 suffers
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from the classic endogenous regressors problem. I showed in Table 6 that log(c?) and log(+?) are
highly positively correlated. Since risk aversion implies that ¢ commands a premia and the two
volatilities are highly correlated, the univariate regression misattributes risk premia driven by risk
aversion to news premia.®’

This implies that the correctly specified regressions are the bivariate ones. In both cases we
have that risk aversion results in diffusive risk commanding a large, positive premium. The news
risk premium is substantially smaller in both cases.

We want to interpret the magnitude of the coefficients, not just the sign. Since I regress
annualized excess log-return on the log total volatility and log jump proportion, the estimates are
elasticities. These elasticities are highly statistically and economically significant. For example,
consider the first row. The elasticity of rz; with respect to o2 + ~7? is 0.24. In other words, a 1%
increase in o7 +~7 for the course of an entire year increases the expected yearly return by 0.24 %.%3
For comparison, the average year-to-year difference in average o? + 77 in my sample is ~ 50 %. It
increased by ~ 150 % between 2007 and 2008.

~2
The average annual absolute difference in — L/Q is only 6.13 %, but the regression coefficient is
t It

significantly larger. A 1% change in o—,?AfA,/;% over the course of changes expected yearly returns by
—5.01 %. In both cases, the implied movements in risk premia from year to year are very large.
I am not the first researcher to find movements in risk premia that are this large; Martin (2017)
reports similarly-sized changes.

I consider several other specification in Section D. The volatility coefficients are robust to
the heteroskedasticity correction and the particular instruments chosen, (Table 17). Results from
running the regression over a subsample either agree with the main results or are not statistically
significant, (Table 19).

10.3. Robustness Checks

Estimating risk premia is difficult because the signal-to-noise ratio is quite low. The literature
has pointed out some issues that can bias the empirical estimates. Perhaps the most important is
the Stambaugh bias, (Stambaugh 1999). He shows that a finite-sample bias can inflate coefficient
estimates if the regressors are stochastic. However, the regressions are run at the daily frequency,
not the monthly frequency as is commonly done. Hence, I have approximately 3700 datapoints.

Since this bias decreases at a rate, this bias should not noticeably affect my estimates.

F Gatapoinis

The other significant sources of bias noted in the literature are also not nearly as significant
here because I use daily data. For example, regressing long-horizon returns on persistent regressors
causes the R? to spuriously increase with the horizon under certain conditions. However, I am not

using long-horizon returns, and so this does not apply. Various authors also have used overlapping

2
because it is not nearly as heavily correlated.
33. The reason that I only considered a 1% change is that the approximation of log-differences as percent differences

only holds for small changes.

32. The regression in terms of log(

) does not suffer from this exogeneity problem to as near a large extent
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returns to increase their effective sample size, which can invalidate the inference. I do not use
overlapping returns, and so this also does not apply.

There is one primary source of error that is worth pointing out. The regressors that I use are
estimated from high-frequency data. Consequently, we may have an error-in-regressors problem.
This problem should not be a significant issue for three reasons. First, since I have a great deal of
intraday data, the regressors should be estimated precisely. Second, the main empirical source of
estimation error is separating the diffusion and jump components, and this should be independent
of the expected returns because it only depends on the magnitude of the high-frequency returns, not
their sign. Besides, it does not even affect estimating o7 4+~7. Third, and most importantly, as I am
instrumenting for the volatilities by their lags and the estimation error is likely independent across

time, both the coefficient estimates and their standard errors should be asymptotically valid.

11. CONCLUSION

This paper investigates how jumps affect investors’ risk. I first show that standard no-arbitrage
based pricing theory implies that jumps are price responses to news shocks. When a news shock
hits causing the representative investor’s information set to jump, she responds by pricing assets
differently. Having done that, I introduce jump volatility — ~7 — which is a sufficient statistic for
the jump part of price dynamics. I then introduce the realized density, RD;, to reduce tracking the
returns’ predictive density — h (r;| F;_1) — to forecasting 77 and o?. I do this by providing a new
representation for infinite-activity jump processes as integrals with respect to a variance-gamma
process. I then develop nonparametric estimators for the instantaneous and integrated jump and
diffusion volatilities and for the realized density to enable taking these representations to the data.

I apply these estimators to the S&P 500 using high-frequency data from SPY. I find that jumps
drive approximately one-half of the ex-post squared variation and that this proportion varies sub-
stantially over time. I also evaluate the performance of the estimators in simulations and find that
my estimators perform well in estimating the volatilities. I then consider the behavior of these
estimators in the data providing several new stylized facts. I show that the jump volatility is rela-
tively well-behaved and has a bell-shaped distribution after applying a logarithmic transformation.
In other words, the volatilities are roughly log-Gaussian. Finally, I show that 77 is both very
persistent, having long-memory, and highly correlated with o?.

I next analyze how jumps affect expected returns. In particular, I show that risk premia have
the following form — — d(m,p)(t) — d<mUP .p’ > — where m(t) is the predictable part of the log-
SDF and mUP(t) is the unpredictable part. I further relate m(t) and mYF(t) to the curvature
of the utility function and the certainty equivalence functional. The theory requires two factors
that move at high-frequency in general. I show that the premium associated with ~7 is statically
and economically significantly less than the one associated with ¢2. This divergence implies that
investors preferences are not time-separable and that the data require two factors that move at
high-frequency as well.

As this work introduces the jump volatility, a great deal of work still needs to be done. One
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prominent question is how to generalize the theory and empirics to higher dimensions. Can we
derive a similar multivariate representation and estimators for the jump processes? Doing this will
require figuring out what the appropriate multivariate Laplace distribution is. Presently, several
multivariate Laplace distributions exist, but it is not apparent any of them have the proper relation-
ship to Poisson and Gaussian processes. Moreover, this paper shows the proposed estimators are
consistent in the noise-free case. Deriving the relevant inference theory in the presence of market
microstructure noise would be quite useful.

Second, previous authors have shown that the stylized features of o are relatively stable across
different assets. Is this also true for 4?? For example, people have argued that news risk is
fundamental in understanding foreign exchange markets. How does 77 act in those environments?
Third, on the financial side, a great deal more empirical and theoretical work is needed to fully
understand the relationship between the premia associated with o7 and v?. A fully specified general
equilibrium model that determines the correct underlying risk factors would be useful to rationalize
the new empirical evidence.

Fourth, since this paper reduces forecasting returns’ distributions to forecasting the volatilities,
it greatly simplifies tracking time-varying tail risk. Consequently, building a joint dynamic model
for both volatilities and the drift and analyzing the resulting models’ performance in tracking tail

risk would be extremely useful.?*
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APPENDIX A REPRESENTATION THEOREMS

Theorem 2 (Jump Volatility and the Predictable Quadratic Variation). Let p(t) be an Ito semi-
martingale satisfying Assumption Square-Integrable, then the following holds where (p”)(t) is the
predictable quadratic variation (angle-bracket) of p” (t):

Q—tﬂ?ss:t 2(s, 2)v(dz, ds) = (p’ — ()t -
b= [ Peds= [ e = 00 - ) -, (14)

—1
Proof. .
T(t) = 5)% = 2(s, x)pu(ds, dx
(1) =Y Ap(s) /O/XM, Jyu(ds, dz) (72)

s<t

This comes from the view of the jumps as integrals with respect to Poisson random measures and

there being no predictable jumps. Intuitively, the compensator v does not jump and realizations
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of i are equal 1 which does not change when squared.

— ()’ (t) =E[[pV(t) | Fi] :E[/O /){52(8,x)u(ds,d9:)

]—"t_} :/Ot/X52(s,x)I/(ds,da:)

(73)
We also need to show that the limit in the expectation form approaches v2(t).
Define v2(t) := [y 6%(t,z)v(dz,dt), then

2

.1 2 )
B[ -0 7] - 3o

t+A
/t d(s,z)(pn — v)(dsdx)

]—"t_] . (74)
By the It6 Isometry, we can rewrite (74) as

1 t+A
= lim —E [/ 62(s, x)p(ds dx)
t

ft] (75)

Then by choosing § so that dx,ds are independent, and the projection of v onto the Lebesgue

measure is constant.

1 t+A )
= ilglo EE [/t /X5 (s,z)(dx dx)

t+A
= lim %E [Af(t) + /t (V*(t) —=7*(s)) ds

]-"t_] (76)

}‘t} (77)

We can split this into the value of the jump volatility at ¢ and deviations from it.

sup 7y (t) —~%(s)

t<s<t+A

1
= lim ~? —AO|E
A7 O+ R 0(

‘ED = 2(t). (78)
]

Theorem 4 (Time-Changing Jump Martingales). Let p’(t) be a purely discontinuous, martingale
satisfying Assumptions Square-Integrable, Infinite-Activity Jumps, and No Unpredictable Jumps
that can be represented as H x (n — v) where H(t) is a predictable process, n a Poisson random
measure, and v its predictable compensator with Lebesque base Levy measure.

Then p” (t) time-changed by its predictable quadratic variation is a standard variance-gamma
process. In other words, p” (t) £r (p")(@®)).*

Proof. To prove the result, I start with a representation of a purely-discontinuous martingale as
an integral with respect to a Poisson random measure. This is a two-dimensional representation of
the jump process with all of the dynamics contained in the predictable process H. There are two
key parts to the theorem above. First, we must handle the dynamics contained in H, and second

we need to reduce the two-dimensional representation to a one-dimensional one.

35. Note, the equality here only holds in law unlike in the Dambis, Dubins & Schwarz theorem, where it holds
almost surely.
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We know that there are only finitely-many jumps in any strip that is bounded away from O,
but infinitely-many in any interval containing 0. To maintain this intuition, I switch the base Levy
measure to one that has this property. Second, I make a time-change argument in each strip to
deal with its dynamics. Third, I switch from an integral with respect to infinitely-many Poisson
processes to one with respect to a Poisson random measure by taking the appropriate sum of these
processes. I use capital letters to refer to processes as is standard in the literature. Since I do not
discretize, there should be no confusion. Define 1* = 1{x € [z, z + dz]} where z € R, and dz € R,
where I suppress dz in the notation. Similarly, for a process X define X* = X * 1%. In words, X~
is the process X restricted to the strip [z, z = dz].

Denote p(t) by Y (t). I now switch the representation of Y as an integral with respect to
a Poisson random measure with more intuitive properties. Y is locally-square integrable, and

7 is almost

hence (Y) is well-defined, that is for any stopping-time 7, the stopped-process (Y")
surely finite. Since Y is a purely-discontinuous process, Y? is a two-dimensional sum. To put in
mathematical notation, (Y*)" = Ds<twelz,+dz] 0(@, 8), where 0 is a predictable Dirac delta. Also,
define (X)~1(t) = inf{r : (X) =t} for any process X. This is the standard inverse definition when
the process may be zero, and is innocuous here because if (X) 2 0 = X “ 0.

Recall that I assumed that the base measure of u was the Lebesgue measure A. (%) is an
infinite-measure and is absolutely continuous with respect to Lebesgue measure in any interval not
containing zero. Let [i be a Poisson random measure with associated Levy measure (%) Throughout
the rest of proof, I use tilde’s to refer to measures associated with this random measure. For example,
U is its associated compensator. Note, since I am using compensated random measures, each strip
[2,z + dz] is a martingale.

The benefit of using this representation is that it implies the associated predictable integrator,
H , is Op(1). In the original case, the local square-integrability of Y implies that H(x,t) as a
function of z is O, (%) Effectively, I am moving the necessary reduction in the intensity of the
process as the jump size increases into the Poisson random measure instead of the integrator.

It is worth noting that in general we cannot choose H to be proportional to a constant; it might
be zero. However, since we have an infinite-activity process, we can without loss of generality. In
addition, the Poisson processes formed by restricting the Poisson random measure to a strip in R,
X? have intensity measures, v(z) = 2~ exp(—z) dzx, which I use in the sequel.

I now turn to using a time-change argument to handle the dependence of Y?, or equivalently,
H*. Since X? is a finite-activity Poisson process, its intrinsic filtration is the filtration generated
by the jump locations. Let tX* be a jump time for the process X#, and consider the set {t < tj(z}.
This set is optional, but not predictable, and its ending time £, is not a stopping time with respect
to the predictable filtration. (It is what is known in the literature as an honest time.) This allows

us to define the minimal enlargement of the filtration of Y%, 7}~ so that the ¢ are stopping times.

FX = neo B Ua({p < 1) (79)

It is worth noting that when you progressively enlarge a filtration with an honest time, semi-
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martingales with respect to the original filtration are still semimartingales with respect to the new
filtration (Barlow 1978). However, this enlargement does not necessarily preserve the martingale
structure. Since I am doing this almost surely only finitely many times and jumps of the original
process are almost surely unique, it is without loss of generality to consider the case with only one
jump.

Consider X stopped at some time p that is a stopping time with respect to the expanded
filtration, not to the original one. It is worth noting that we are expanding the predictable filtration
Fi—, not the original filtration. So using the Nikeghbali (2007, eqn 2.3), we can define the martingale
on the new space. Then X (¢) has the following form, where Z! := Pr[p > t| F;_], is chosen by to
be cadlag. The F; dual optional projection of the process 1{p < t} is denoted by A?(t). Let X be
a martingale with respect to ;. Also, define p?(t) = E[A?(00) | Fi_] = AP(t) + Z°(t). Then

L) [ AW £ 2006) )

X(t) = X(t) +/0 Z0(s) 1= Z0(s)

Since p”(t) is F;— measurable, and the jumps are distributed according to a Poisson process,
uP(t) is a constant. Consequently, the predictable quadratic variation terms in (80) terms are
almost surely zero.

Consider the process X*, where X* and X* are equal pathwise, but we change the filtration
from F; to F;. Since the stopping times of X? are sufficient to generate its filtration, and H is
predictable, we can choose ﬁth to be generated by the predictable o-algebra. Equivalently, it is
generated by the continuous processes. As a result, for any process adapted to this filtration there
exists a continuous process that is equal to it in probability. Since equality in distribution is weaker
than equality in probability, it is without loss of generality to assume that the process is continuous,
and so I do so.

By the Dambis, Dubins & Schwarz theorem, we know that a continuous process is a Wiener
process when time-changed by its quadratic variation. Therefore, Y*([Y?]) £ W, where W is the
standard Wiener process. Intuitively, we can view the jump magnitudes as appropriately rescaled
Gaussian random variables.

However, this is not the filtration generated by the data, and so we need to consider what this
representation implies about the original filtration. We start by considering the precise relationship
between the predictable and quadratic variations both within and between each of the filtrations.

(}72> = [YZ] because all of the adapted processes in F; are predictable. In addition, changing
the filtration does not change the quadratic variation because the process is optional and adapted,
and all the change of filtration is doing is turning optional processes into predicable ones.

Therefore, the key question is what is the relationship between the (Y*) and [Y?] in the original
filtration. The quadratic variation of an integral with respect to a finite-activity Poisson process is
[H* « X*] = ngt(HZ)z(%), where the 7 are the jump locations.

Since X~ is a Poisson process, the amount of time between jumps, that is the length of the inter-

vals define above, is an exponential random variable with intensity ©%. Since P” is a deterministic
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function, F" is an exponential-time change of F. Therefore, Y* = H? %« X is Wiener process after
both an exponential time-change and then a continuous-time change in the transformed space.

There are two main limitations of this result. First, the exponential time-change is not identified,
and so we cannot use it for inference. Second, we want an expression for Y not just for each of the
Y=,

The first problem can be resolved by recalling that if the expectations of a sufficiently general
class of functions are the same between two processes, then the processes equal in distribution. A
sequence of nested expectations does not change if we reorder the nesting as long as the o-algebras
we are conditioning on are independent. However, because the exponential-time change was with
respect to a Poisson process with a deterministic compensator and the other time-change was with
respect to a predictable process, the relevant filtrations are independent here. Consequently, we
have that if we time-change Y* by (Y*), then we have a Wiener process with an exponential
subordinator.

To resolve the second problem, that is aggregate over the strips correctly, note what happens

z

if we aggregate all of the p® together. [* is a Poisson random variable with intensity measure
7(z) = 271 exp(—2)dz. However, the definition of the Gamma process is that its intensity measure
over strips is precisely the expression above.

For a countable partition of R, 21,29..., Y = _Y* and H= >, H#% and i = >, 1. Fur-
thermore, Wiener processes are stable under countable sums as long as the variance remains finite,
which it will in this context because the initial process is locally-square integrable. Consequently,

we can do the following.

lim S YZ (Y1) £ lim W(exp="') = W(T(t)) = £ (81)
I—00 4 I—o00

i<l

To wrap it up, if we time-change a purely-discontinuous, jump process with infinite-variation by
its predictable quadratic variation, we get the variance-gamma process, also known as a standard
variance-gamma, process.

O]

Corollary 4.2 (Time-Changing Finite-Activity Jump Martingales). Let p”(t) be a purely discon-
tinuous martingale satisfying Assumptions Square-Integrable and No Unpredictable Jumps that can
be represented as H x (n — v) where H(t) is a predictable process, n a Poisson random measure,
and v its predictable compensator with Lebesque base Levy measure.

Then p’ (t)t time-changed by its predictable quadratic variation is a mizture of the 0 process —
0o — and the standard variance-gamma process where the mizing weights are the intensity of the

jump process.

Proof. Since Y is a finite-activity jump process, (1 — v) * 1% is almost-surely zero as a function of

z for all but a finite-subset of R. For a segment of time when there are no jumps, the process is
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identically 0. You cannot time-change a process by the 0 process. Therefore, the proof of the main
theorem where we take the limit of the number of strips to infinity is no longer valid.

However, if we split event-space € into spaces where [Y] > 0 and [Y] = 0, then in the first
subset we can make the argument I made above, while in the second subset we have the 0 process.
Jdp is not affected by time changes, and so if we time-change both subsets by (Y), we do not affect
the distribution. As a result, the time-changed distribution is a mixture of §y and £ where the

mixture weight depends upon the intensity of the process v. That is we have the following.

L((Y)(t)) with intensity v
do(t) with intensity 1 — v

Corollary 4.1 (Jumps Processes as Integrals). Let p’(t) be a Ité semimartingale satisfying As-
sumptions Square-Integrable, Infinite-Activity Jumps, and No Unpredictable Jumps. Then p’(t) =

% f(f v(s)dL(s), where L is a standard variance-gamma process.

Proof. Since Y(t) is an It6 semimartingale, Y (t) = fg Jg d(s,z)ds, where I use standard nota-
tion. This implies that its predicable quadratic variation, K (t) = fg Jz (s, z)* dx ds, with time-
derivative k(t) .= [ 6%(s, z) da.

Let J(t) be the purely-discontinuous martingale part of Y (¢), then Theorem 4 implies that
JY)™H () £ L(t), or equivalently, J(t) £ f()(Y>_1(t) dL(s). Then since %L’(l) = L(k?), where £(1)
is a standard Laplace random variable, and k(t) is a predicable process (and so independent of £),
J(t) = fot k(s)dL(s). This is completely analogous to how the time-changed theorem for continuous
processes and absolute continuity imply the integral representation of continuous martingales.

O]

Theorem 5 (Realized Density Representation). Let p(t) be an Ité semimartingale satisfying As-
sumptions Square-Integrable, Infinite-Activity Jumps, and No Unpredictable Jumps. Let o%(t) and
72(t) be semimartingales whose martingale components are independent of the martingale compo-
nents of p(t). Then

RD; = N (/:1 1(s) ds,/ttl o?(s) ds) * L (o, /ttl 72 (s) ds) : (25)

and the predictive density is

h(re| Fi-1) 2/ RD:(pt,07,77) dG (s, 07,77 | Fi1) - (26)

2 .2
Ht,0 57
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Proof. Consider the diffusion part of the process.

t—(n+1)A

B2 -t -1 | Fo) =k | 3 o(s) dW (s) | F (83)

t—nA
nE%,..,O

If A is small enough, we can pull o%(¢) out of the integral because requiring the integrand to be

predictable does not affect the value of the process.

t—(n+1)A
=h| > o(t—na) / " dW (s) | Fi_1 (84)

t—nA
nel,%

Since the martingale components of 2(t) are independent of W, we can condition on the entire

path of o2(t) without affecting the distribution of the increments of W.

£ (\/HT/HCZW Fi 1> (85)
:/02 (,/tHA ()ds)dG (02| Fiy) (86)

t

The argument for the jump volatility follows mutatis mutandis. The only real difference is that
the scale (the expectation of the absolute deviation) of the Laplace distribution is the square-root
of one-half the variance. Consequently, when you pull the variance outside of the integral, you get
an additional v/2 in the denominator.

You can just carry the mean through the analysis, and then add it back in when you are done.
To combine the jump and diffusion realized densities, note that density of a independent variables
are convolutions of the densities. The integrators are pure-jump and diffusive martingales, and
so they are automatically orthogonal. Consequently, the jump and diffuse parts are independent
conditional on the drift and the volatilities. Also, I derived RD; in the argument above because it
is simply the function inside the integral.

O

APPENDIX B  VOLATILITY ESTIMATION

Lemma 6 (HL implies SHL). If an Ité6 semimartingale p(t)" E>p(7f) under Assumption SHL,
then p(t)" ﬁ>p(75) under Assumption HL, and the equivalent statement holds for convergence in

probability.

Proof. T use U™(p)(t), and U(p)(t) to refer to two processes defined as functions of p(t). In the
first step, I define a process in terms of p(¢) that satisfies Assumptions SHL and Infinite-Activity
Jumps and characterize its relationship to p(7). In the second step, I show that if that p(t) satisfies
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Assumptions HL and Infinite-Activity Jumps, then U"(p)(t) =u (p)(t) under Assumption SHL
implies UM (p)(2) £ U(p)(t) under Assumption HL. T then show that Assumption Infinite-Activity
Jumps is unnecessary, and similar statements hold for convergence in probability and convergence

of stopped processes.

Step 1

I let w € Q index the event space. We can assume without loss of generality that x(0) = 0, and
so there is a localizing sequence 7; such that ||u(t)|| < j if 0 <t < 7;. Define the stopping times
R; =inf(t: ||p(t)|| + |lo(t)]| > p) and the stopping times Q; = inf (¢ : ||p(¢)|| + ||7(¢)|| > p). These
increase to +oo as well. Therefore, we can set S; = 7; A R; A Q).

Then we can define the following processes:
pl(t) = p(t A S), eV () = a(t A Sj), ¥9(1) =(EAS)) (87)

and
=" . o SR )
p(0) + [y n9(s)ds + [y oD (s)dW (s) + [y ¥V dL(s) if S; > 0.

Now, local characteristics of pU) agree when t < S; as they are defined to be the same. If
S; =0, then ||p(¢)|| = 0, and so we are equal there as well. Furthermore, if we use the same driving
measures W (t) and L(t) to represent both processes, the equality is not just in distribution, but w
by w, where the original processes are defined relative to an event space €.

In addition, p¥/)(t) satisfies Assumption SHL, since ||p\@)(t)|| < 3p.

Step 2

By the proof of Jacod and Protter 2012, Lemma 4.4.9, the above statement is sufficient to show that
the estimators defined above imply convergence stably-in-law. Then this holds for any process, and
so it clearly holds for the stopped versions above. In addition, convergence stably-in-law implies
convergence in probability if the two processes are defined on the same probability space, which we
do not change above. So if the original result was for convergence in probability, the new one is as
well.

If p(t) does not satisfy Assumption Infinite-Activity Jumps, then it is locally a convolution of a
Laplacian mixture and the zero process. Replacing part of the sample path with 0 does not violate
any boundedness conditions. Therefore, we can replace pl )(t) with the 0 process when necessary,
and so the result even holds if Assumption Infinite-Activity Jumps does not hold.

O

Theorem 8 (Estimating the Instantaneous Absolute Volatility). Let p(t) be an Ité6 semimartingale
satisfying Assumptions HL, Infinite-Activity Jumps, and Square-Integrable. Let k,, A" satisfy
kn — o0 and k, VA" — 0, and let 0 < 7 < oo be a deterministic time. Define i, =i — k, — 1.
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Then the following holds, where erfcx := %L\/g“g) [ exp(—s?) ds:*

! kf\m Pl BENO, Do (=) + 27 exfex ("(7_)) (30)
B/ | V2 1))

Proof. This proof is divided into a number of steps. I start by deriving the mean of the absolute

volatility under an assumption that o(¢) and v(¢) are locally constant. I then show that the
estimator in that situation converges to its mean. I then relax the assumption of locally-constant

volatility.

Step 1

In this section, I start by applying It6’s Formula for convex functions to [p|(t) to separate its
variation into its jump and continuous components. Recall the left-derivative of the absolute value

function.

, ) 1 ifx>0
fL =sign(x) = (89)
-1 ifz<0
Then using Medvegyev (2007, Theorem 6.65), where A(¢) is a finite-valued increasing process,

we can rewrite ||p(t) as

t t t
Ip(t)] = /0 sign(p(s—)) dp(s) + A(t) = /0 sign(p(s—)) W (s) + /0 sign(p(s—)) dL(s) + A(t). (90)

A(t) is a finite-valued increasing process and so it can be absorbed into the drift term of p(t) and
vanishes as A — 0. If the Laplace part and the diffusion parts have the same sign, |p|(t) — A(t) is
the sum of the absolute values of the two processes. Since the innovation processes are independent
and symmetric, this occurs one-half of the time.

If they have different signs, the situation is more difficult. In that case, sign(p(s—)) is the same
as the sign of the larger, in magnitude, of the two processes. Since the two processes have different
signs, the smaller process has the opposite sign. Consequently, the part of |p(¢)| — A(t) where the
two process has different signs can be rewritten as follows. Let Q% be the set where the Laplace

part in magnitude is larger and Q" the part where the diffusion part is.

p(1)] — A(t) = / sign(W (s—))Lgw (s—)o(s) AW (s) — / sign(L(s—))Lgw (5—)7(s) dL(s)
0 0 (91)

+/0 Sign(ﬁ(s—))lﬂp(s—)’y(s)dﬁ(s)—/0 sign(W(s—))1qc(s—)o(s) dW (s)

Let A be the length of an interval over which (t) and o(t) are constant, and let |¢| and |¢|

36. This function, erfcx, is the scaled complementary error function. It is a reparameterization of Mill’s ratio. Most
scientific programming suites provide efficient, numerically-stable implementations.
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denote the densities of the absolute values of a Laplace and Gaussian variables, respectively. Then

we can rewrite an increment of (91) as follows condition on the signs differing as follows.*"

| [ oo s@lblaatdody+ [ /y“@_y)m(m)W,mdwx o)

:‘\/[;< 7+\2f0+’yerfcx<7>> ’Y\‘gerfcx<‘;> (93)

_VA <mlg L2 (2 exfex (z) - 1>> (94)

In the part where they both have the same sign, the absolute value is just the sum of the

absolute values and so we can rewrite (91) given that the signs are the same as follows.

mioVA + %x/ﬁ (95)

Then by taking the average of the (94) and (95), we can solve for (91).

_ WA tex (©
E|p(t)] — A(t) = mioVA + NG erfex <7> (96)

The first part of this equation is the expectation of the absolute value of the diffusion part.
If erfcx(o/y) were replaced with 1, the second part would be the absolute value of the jump
part. Consequently, erfcx(o/v) reweights the jumps appropriately. It is also worth noting that
lim, g erfex(z) = 1, and lim,_, erfcx(z) = 0. Consequently, as o vanishes we recover the mean of
absolute value of the jumps, while as v vanishes we recover the mean of the absolute value of the

diffusion part. This is precisely what we need.

Step 3

In this section, I consider the asymptotic behavior of the estimator. I prove convergence in mean-
square which implies convergence in probability. Let €2, be the set where the two increments have
the same sign and let A\, be its accompanying Lebesgue measure.

Since o(t) and ~y(t) are step functions, there exists a sequence {7;} such that o(t) and v(t) are

constant over the intervals between the various 7;.

> [ emaw+ [T simace o)

Tj

Consider the squared norm of the difference between the estimator and its expectation. It is
worth noting that as k, gets large we are averaging over times earlier and earlier with reference
to 7, which is why the bottom part of the integral is growing with k,, not the top part. We can

assume without loss of generality o(t) and v(t) are constant over 7 — k, A", 7 by taking k, A" to 0

37. A standard computer algebra system can be used to perform the requisite integration.
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faster than the mesh of 7 goes to zero, (which it may not at all). Consequently, we let 7 depend

upon n in our notation.

We can rewrite the sample and population difference as

2
1 O Y(7n) o(7n)
E A mZO‘AinerM — ‘mla(rn) + i erfcx (’Y(Tn) (98)
L& kZ"/T("’m) (ra) W (s) /T("’m) (ra) dL(s) (99)
== o, s) + Y(Tn s 99
k?%A m—o|7 7(n,m=+1) 7(n,m+1)
- () ||
—k, A”maTn—i—VTn erfcx<07n>‘ .
S )
Then by applying (96), we have
=L g ||kvA o () + 1) erfex <"(T”)> ‘ + A(t) (100)
k2 An V2 v(70)

— kp VAP

mio(rn) + L erfex <3(T")>

Simplifying implies this is

-0, <W> , (101)

since A(t) is a finite-variation term.

Step 5

To finish deriving the theorem, we show that approximating the volatility functions by step functions
is innocuous. Consider a sequence 7, — 7, and define (t) = o(max7, : 7, < t), and similarly
for 5(t). Define 2(t) = sup,, o, <snrlz(51) — Z(s2)|? for z equal to ¢ and ~, while let Vi) =
> s1.sa<tnr|b(81) — b(s2)]. These functions exist and are almost surely finite by localization since
o, 7, and b are locally-bounded. Now, consider the squared distance between any semimartingale

satisfying our assumptions and the one used in (97). Let t1,t2 < 7.

E

H /: u(s) ds + /tt o(s) AW (s) + / " ()AL (s) (102)

t1

_ </tt2 &(s) dW (s) +;/:&(s) dﬁ(s>>

2
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Increasing the range is valid because all of the integrands are positive.

<E [/tTu(SP(S)Jr tTy&(s) —o(s)? ds_,_% tT|’~Y(8) — (52 ds (103)

Then we can bound each of the terms.

=075 (1) + O(1)73(1) + O(1)73(7))(7 — ta) (104)
=0(1)(1 — t2) (105)

In other words, if we choose a sequence of meshes so that the supremum of their magnitudes
A"™ — 0 and the minimal value 7 — k, A" — 0, the entire square converges. As one might expect
from the definition of integration, approximating the integrands by step functions is innocuous.

Finally, we combine the preceding parts to bound the entire process. Note, since variances of
sums can be written in terms of variance of the original parts and their covariance, the asymptotic
rate at which the quadratic variation decreases towards zero equals the larger of the asymptotic
rates at which its constituent components do. Let Y’(¢) be the absolute value of the process derived

n (97). Consider the mean-square deviation of the estimator from its limiting value.

n—1 2

1 n / / oy V(T_J U(T_J n
i AnE T;)min wmD| =Y () +Y(t) — <m10(7—)kn\/A + 7 erfex o kn VA
(106)
By splitting the term into two parts and using the bounds from (101) and (105).
1
~1A. (O(AK2) + O(Aky)) — 0 (107)
O

Theorem 7 (Estimating the Instantaneous Diffusion Volatility). Let p(t) be an Ité6 semimartingale
satisfying Assumptions HL, Infinite-Activity Jumps, and Square-Integrable. Let k,, A" satisfy
kn, — 0o and koA, — 0, and let 0 < 7 < oo be a deterministic time. Define i, =i — k,, — 1. Let
cl(A”)1/4 <o <= caV/A™ for some constants c1,ca and v} — 1. Then

kn—1
37 oA p*1{|AL p| < vp} 5o2(r-). (29)

m=0

1
~ k,An

a\?n (kna T_7p) :

Proof. The intuition behind the proof is straightforward. We separate the large jumps from the
continuous part by truncating, and then note that the small jumps do not matter asymptotically
because by squaring the remainder they get pushed even closer to zero. Consequently, we only

pick up the middle range of the distribution, which is dominated by the continuous variation.
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Effectively, we are considering lim, o IV (1) — IV (7 — 5), and since we are estimating the left-limit

of its time-derivative, o%(7—), this works.

By localization we can strengthen some assumptions. Specifically, we can replace Assumption
HL with Assumption SHL. In addition, the jump martingale part of the process is a sum of an
integral with respect to Laplace motion £(t) and the zero process dy(t) where the weights depend
upon the intensity of the jumps by Corollary 4.2 The jump increments of that part are almost
surely zero, and so if we separate the space into parts where £(t) is active and where d(t) is active,
we only have to deal with the first section. Consequently, we can assume that the jump part is an
integral with respect to £(t). The part of the proof regarding the continuous part of the process

will not change in either part.

Step 1

I proceed by showing convergence in mean square, which implies convergence in probability. Note,
|A?n +mp}2 = Op(A"™) for all ¢, since p(t) is an integral with bounded integrands and integrators
whose quadratic variation is proportional to A™. Consider the jump part of the variation. To prove

consistency of the original process, I must show that the jump part converges to zero.

Following Jacod and Protter (2012, 258), for all w,x,y,z € R, € € (0,1], and v > 1,

4
K
(z+y+z+w)l{lz+y+z+uwl <v}—x2‘ gK‘UxL+6x2+€((v2/\y2)+z2+w2). (108)

Define the following four processes, where I split the process up. The continuous variation is
split into two parts, one with locally constant volatility and the other being the additional deviation

coming from the change in the volatility.

Y™(t) = o(m) (We — Wi )1 {70 < t} (109)

/

Y "'(t) = / At(a(s) — () dW(s) (110)
20 = [ e (111)
B"(t) = /Tn/\t w(s)ds (112)

/ An L yn
Note, p(tp, At) = Y"(t) + Y ™"(t) + Z"(t) + B"t. Now, we can use (108), with = = %,
AT zn AT B"
Y= %, and w = %. The main issue here is showing that all of the parts except

for Y™(t) converge to zero because then we are essentially just taking the variance of that part.

Take v = \/”ﬁ = wy, where w, = 0,(1/A") and 1/w, is 0,(v/A). Then we have the following
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inequality:
kn—1 kn—1 4 2
Yn 7’L o intm intm 113
kmz‘ - ) |—knn;)(wg VA" +’ N/ (113)
K A?n—i-mZ ? A?n—&-myln ’ A;L +m 2
An €| VAr €] VAn '

Set v, = ZsG\Tn,Tn+(kn+2 anylo(s) = o(7)|?, which is bounded and converges to zero, and ¢, =
Z. Clearly, E|A} VAR

Consider the part of the variation in Z(t) that comes from jumps smaller than 1 in magnitude,

in+m

D s€lmmrnt (knt2)an| [V (8 s)|* The key hard part is bounding A"

where 1 is an arbitrary constant picked for the sake of simplicity.

E|L£(0, ¢n) A 1| = ¢pp VA" — exp (— ! ) (pnVA" +1) <O (\/1AT> exp <—

I > . (114)

1
PnV A"

In addition, since 7, is a stopping time, the probability that a jump exceeds 1 in the previous k,,

. - . 1 AL mZ 5 1
periods declines to 0 almost surely with A™. Consequently, oz \/A—fl € 0, ( A"w3> exp (— o \/F)
op(1) as exponential functions decay faster than polynomials increase.

[use K to refer to an arbitrary constant here, which may change. A} , B is the drift term, and

4
so |An Bl < KA". E[JAT VY i imonan] < K(A™)?2. [’A” am_nyan] <

in+m i +m
KA%Ely, |.7-"(Z-n+m_1) an < KAN. As a consequence, we have the following where &, is some sequence

converging to zero:

E[|(5)2 — 07)2]] < Ke+ = (1) + 0p(1) + Bl (115)

If we take n — oo, and then € — 0, the left hand side of the above equation converges to zero.

Step 2

To complete the proof, we have to consider what lim, e 7—zw o Zk" 1|Y; ? is. If we recall its

definition, we note that converges to the variance of the increment:

kn—1 kn—1 2

AW
—T 2 lom (W= W )14 < ) = o(r)? y Y|P | motmt o)

Since the square is a convex function, we can combine these two previous limits, and we get
that the original expression converges to o(7,)2. However, this is the local integrated volatility
evaluated at 7,, which was the object of interest. Clearly, if we multiply the expression by a value

that is almost surely converging to 1, none of the results change, and we are done.

O
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Properties of the Scaled Complementary Error Function

We first note that the scaled complementary error function is a reparameterization of the Mills’
ratio r(x), (Baricz 2008):
erfex(x) == E|N(0,1)|r (w\/i) . (117)

As a result, we can easily adopt the known features of that function bounds for it. In particular,
this implies that erfcx(x) is a convex, strictly-decreasing function. It also implies the following
bounds, (Theorem 2.3):

4
VT(VrZ+ 4+ 3z)

< erfex(z) < (118)

2
Vr(Va? + 2+ x)

Theorem 9 (Estimating the Instantaneous Jump Volatility). Let p(t) be an Itd semimartingale
satisfying Assumptions HL, Infinite-Activity Jumps, and Square-Integrable. Let kn,, A" satisfy
kn — o0 and kn VA" — 0, and let 0 < 7 < 00 be a deterministic time. Define i, =1 — k, — 1. Let
on(T7—) converge in probability to o(t—). Let v(7) > 0 and g be strictly-increasing, conver, and

continuous, then the following holds:

kn—1 fCX an('r—)
1 n N yer ( - )
/AT T;)\Aiwmp\ — EIN(0,1)[Fn(r—) — 2

3 (kn, 7—,p) = argming
Y

Proof. In the following proof, I use 0 subscripts to denote population objects.

@wwfg<

kn—1
1 < n R 00
kni\/z mEO ‘Aln+mp‘ - mlo'(T—) — '}/erfCX <’y\/§> ‘) (119)

We can start by noting that @n('y) is implicitly a continuous function of 6,(7—). However,

. . ~ P . . .
since, by assumption, 6, (7—) — 09, we can suppress that dependence in our notation and plug in
0o- In addition, g is an increasing function and both g and abs are convex, continuous functions,

we can use the continuous mapping theorem to derive the limiting value of @\n(’y)

~o erfex (;%) — yerfex (ﬁ%) D (120)

Clearly, this equals zero when v = 7. Moving forward, we will show that both Q\n(v) and Qo(7)

wa:g<

are both strictly convex, which will imply the minimum is unique. Define A(o,~) = yerfcx <L>

V2
Showing A(o,7) is strictly increasing for all o is sufficient to show this convexity because of prop-
erties assumed about g and the absolute-value function. This statement is likely to hold as erfcx is

almost constant as a function of v, but I must make rigorous what is meant by almost.

0 o o o 0
airy’)/ erfcx <m> = erfex <W§> — m% erfCX(.T) x:Lf (121)
2

Y
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Since erfcx is a decreasing function, the last term is negative, and so the entire equation is
strictly positive. This implies that Q,(7) and Qo(v) are both strictly convex as functions of ~,
which then implies the minimum given above is strict.

Since we assumed that vg > 0, v is in the interior of a convex set. Consequently, by Newey
and McFadden (1994, Theorem 2.7), 4, is well-defined in the sense of being a unique minimizer,
and Ay, LN Y0-

O

ApPPENDIX C NEWS PREMIA THEOREMS

Theorem 1 (Jump Times are News Times). Consider a stopping time 7. Let P(t) be a price
process satisfying no-arbitrage. Then its natural filtration — FF — contains all of the information
in the representative investor’s information set relevant for asset pricing, and F¥ # FE_ if and

only if P(t) jumps at T, where FY_ is the associated predictable filtration.

Proof. Since, P(t) satisfies no-arbitrage in the sense of no-free lunch with vanishing risk, by Delbaen
and Schachermayer (1994), it is a semimartingale. First we prove that if P(t) jumps at 7, then the
two filtrations are not equal. Note, ! = Us<¢Fr. Clearly, p(r) ¢ F¥ for all s < ¢, and so it is not
contained in their union, and so F,_ # Fr.

To prove the reverse direction, let },’(t) by the predictable projection of P(t), but then since
PP(t) is pre-visible, ? P(7) is measurable with respect to FZ_, but p(7) is not by assumption. Hence,
it cannot equal its predictable projection with probability 1. However, this implies that 7 is a jump
time of P(t).

The only other thing that we need to prove is that F! contains all of the information that
the representative investor knows that is relevant for asset pricing. Assume not. Then there
exists an event £ contained in the representative investor’s information set F; that is relevant for
asset pricing, but is not measurable with respect to £. Let P(t) be the price, and M(t) be the
representative investor’s pricing kernel.

Then we know the following, where P(t) is the cum-dividend price.

P(t) =E[M(r)P(r)| F/|VT >t (122)

In addition, £ being relevant for asset pricing implies that there exists a stopping time 7 such
that the following inequality holds.

E[M(r)P(r) | F{] # E[M(T)P(1) | F{] (123)

However, P(t) is measurable with respect to F by definition, and it equals the value on the

left. Hence, we have a contradiction.
O
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Lemma 12 (An It6’s Formula for the Expectation of a Square Integrable Semimartingale). Let
f be a twice-differentiable function and Z be a vector-valued semimartingale with locally bounded
predictable (Z)(t). Then the differential of f satisfies

i [(D)| 7| = [r(2e-)az)| 7] + 5200 aiz) o). (63)

Proof. The argument below is a standard application of 1t6’s formula for non-continuous processes
applied to processes of bounded variation. In addition, the notation below should be interpreted
in vector form. For example, dZ(t) is the vector of dZ; for all 4, and (ZP) is a matrix. We start
by writing expanding the differential inside the expectation using It6’s formula for non-continuous

semimartingales, (Medvegyev 2007, Theorem 6.46):

@B [1(2(0) | 7] = @B Zazz <t>+;Zajgzjf<s<t—>><z~ﬁ,z~ﬂ><t> (124
3Y)

d
f ~
E — ))AZ;(t Fi | .
+ ( - 9z (t) t
Rearranging and combining terms, we have.

— B [ f/(Z(t-)) dZ(1) + (AF(Z0) + (Z-)DZ(s) (125)

P22 ’f ] |

Then by Taylor’s theorem, canceling terms and noting that continuity implies bounded for the

derivatives of f as long as Z is bounded:

= dE [f( (t >>dz<>+§f”<2<t—>>d<2D><t>H (126)
+%dE [f”(Z(t—))AZ(t)2+O((AZ ‘}} ] (127)

Since the quadratic variation and the predictable quadratic variation coincide for continuous pro-

cesses.

= dB[f/(Z(t-))dZ () | Fia] + 5 (2 dIZ)0) + E [0(AZ() | 7]
(128)

By the Davis-Burkholder-Gundy inequality, for some constant c:

— dE [f/(Z(t=)) dZ () | Fea ] + ;E [z A2 | 7 (129)

+E [010([2]3/2) ‘ft_} .
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Since we are considering local changes in time,

— dE [ f'(Z(t-)) dZ(t) ] Fio]+ % 1"(Z (=) d( Z)0). (130)

Theorem 11 (Asset-Pricing Equation). Let Assumption 6 hold, prices be Ito semimartingales, and
the representative consumer face Problem 1 as A — 0. Assume preferences are such that optimal

consumption is strictly positive. Define

Up SV we) _ ¢'(V(W(t-)) V(W (1))
M= g ey MY = FeTEv O F) vy
Then MUYF(t) is a purely discontinuous martingale, and for all stopping times T > t,°
P(t) = E [M()MYF(r)P(7) | 7] (61)

Proof. Define the discounted price: P(t) := exp(—rt)P(t). This is a concave maximization problem
and so first-order conditions characterize the optimum. Assume, for now, that the investor can only
adjust his portfolio at a discrete grid of points ¢,t + A, ¢t + 2A,... Then consumption and prices

are effectively constant within each period, and the investor is faced with the following problem:
V(W () = _pax u(C(t)) + exp(—kA)g~ " ([p (V(W(t + A))) | Fi]) (131)
t) + Z Pi(t)&(t) = W(t) (132)

W(t+A)= ZP (t + A)&(t) (133)

¢ (V(Z Pi(t+ A)&(t))) H) :

(134)

The discounted and original prices coincide at ¢, and we can equate exp(—rA)P;(t + A) with

Submitting in the constraints gives

V(W(t)) = rél(agiu(W(t) - Z Pi(t+ A) + exp(—rA)p ! <

ﬁi(t + AO0. Hence, by using chain rule, and the formula for the derivative of an inverse, the first-
order condition for (134) is

, _— &'V (W(t+ A))
w(c(t)Fi(t) = E ¢ (oL (E[p(V(W(t+A))) | F)))

VI (W (t+A) Pt + A) ‘ ft] , (135)

38. I use the UP superscript because MYT is an unpredictable process.



Jumps, REALIZED DENSITIES, AND NEWS PREMIA 75

at the optimal level of consumption and optimal asset shares. We can rearrange (135) as:

¢'(V (W(t+A4)) VI(W(t+4))
¢ (o~ Elp(VIW(E+A))IAD)  w(cd))

P(t)=E [ Pi(t+ A) ‘}}} . (136)

If we plug in the risk-free rate ]Bf(t) in to (136), the prices on each side of the equal side are the

same, and we can divide through by them. This gives

(137)

I -E [ g’(V (W(t+A)) VI (W(t+A)) ']__t] '

¢ (o=t Elp(VIW(E+A))IAD)  w(c(t)

In other words, the two terms in the inside the expectation are a martingale. Consequently, prices
are a martingale with respect to the change of measure they induce. We can take limits as A — 0
in (136), which gives

¢'(V.(W(t)) Vi(W (@)
¢ (o1 (E[p(V(W (1)) | Fi-1)) w(c(t—)

P(t) =E [ ))é(t) ‘}}_] (138)

Now, we want to separate these two terms into a pure jump component and the remainder.
To do this, multiply and divide the first expression by ¢'(V (W (t—)):

iy - [ S0V F(V (W(t-)) Vv

)
= Bit) | Fi- (139)
¢'(V(W(t=)) ¢/ (o7 (E[o(V (W (1)) | Fi])) w'(e(t=))

Note, the first term here is simply MYF (). Claim: MYP(t) is purely discontinuous. By Ai
and Bansal (2018, Theorem 1), we know that the value function is a differentiable, and hence

continuous, function of wealth. In addition, I am taking limits locally in time, and ¢’ is strictly
positive. Consider lima_,o MYP(t — A).

pn OV VE=A))  limased (VIW(E=A) ¢ (V(limas W(t— A)))
A=0 ¢ (V(W((t—A)-))  limaod (V(W((t—A)-)) ¢ (lima,V (W((t—A)-)))
(140)

_ V(W)

S

This implies that MUP(t) is a pure-jump process because its continuous part is identically
one. In addition, I assumed there were no-predictable jumps, hence any drift (finite-variation,
predictable) terms in the environment must be continuous. Consequently, MYF(t) is a pure-jump
martingale.

O]

Theorem 13 (Asset-Pricing Equation). Let the assumptions in Assumption 6 hold, P;(t) be an
It6 semimartingales, and the representative consumer face Problem 1 as A — 0. Assume that

preferences are such that optimal consumption is strictly positive. Then risk-premia for some asset
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Proof. The goal here is to replace the asset pricing equation in Theorem 11 with a stochastic
logarithm of P;(t). Let M(7) = exp(—#(7))M(7) be the discounted stochastic discount factor. In
this derivation, it is more useful to place the deterministic discounting into the discount factor than

into the prices.

Then the asset-pricing equation is:

B(t)=E [M( YMUP (1) ’ft} . (141)
Since M (t)MUYP(t) given F; equal 1, we can pre-multiply by it,

MOMUP()P(t) =E [M( YMUP (1) ‘}}} . (142)

In other words, M (t)MYPP(t) is a martingale. This is the standard SDF type result. Dis-
counted prices are martingales. I now take the stochastic logarithm of both sides. Taking the
stochastic logarithm (as opposed to the regular logarithm) is useful because it preserves the mar-
tingale property. (The stochastic logarithm — Log(X) — is the inverse of the Doléans-Dade

exponential.)

Before, I do this, it is useful to consider a few of the stochastic logarithms’ properties. First,
the following holds: Log(X -Y) = Log(X) + Log(Y') + [Log(X), Log(Y)]. We can also handle
triple-products. You just need to apply the expression twice, and note that finite-variation terms

do not affect the quadratic variation.

Log(X Y -Z)=Log(X)+ Log(Y) + Log(Z) + [Log(X), Log(Z)] + [Log(X), Log(Z)] (143)
+ [Log(Y), Log(Z)]

As noted above, since (142) is a martingale its stochastic logarithm is as well.

0=E [/j dLog (MMYFP) (s)

} . (144)

We can expand this equation using (143). We can also replace the integrals with differentials

without loss of generality because 7 is arbitrary:

— 0=E [d.cog(ﬁi) (t) + dLog(MYP)(t) + dLog(P)(t) (145)

+ dlLog(M), Log(P))(t) + d[Log(MUT), Log(P)](t) + dlLog(M), Log(MUT)(t) | Fi-] -
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The stochastic logarithm equals the regular logarithm up to finite-variation terms:

=E |dLog(M)(t) + dCog(MYT)(t) + dLog(P)(t) (146)

+ dllog(M), log(P))(t) + dllog(2"'7), log(P)](t) + d[Log(31), Log(M")](#) | Fi-] .
We can combine M and MY together:

—E [dLog (M - MYP) (1) + dLog(P)(¢) + dllog(M), log(P)}(t) + d[log(M""), log(P)] (1) | Fi-]

(147)
The stochastic logarithm satisfies the following stochastic differential equation:
|
Log(X)(t) = dX(s). 148
0g(X)(0) = [ 54X () (148)

Consequently, we can rewrite (147) as follows, where I replace the quadratic variation terms with

predictable quadratic variation terms,

d(M-MYP)(t)  dP(t)

OB o) T Pao)

‘ Fi | + d(log(M), log(P))(t) + d(log(MV"), log(P))(t). (149)

If MUP(t) is identically 1, the all of the terms containing it disappear, which gives the standard

asset pricing equation:
dP(t) N dM (t)

P(t=)  M(t—)

.Ft_] = —d(m,p)(t), (150)

where m = log(M). We can ignore the discounting because it only cases a mean shift, and so will

not affect quadratic covariation terms.

In the recursive case with jumps through, it is more complicated. An announcement SDF term

is a pure-jump process so it only have non-zero covariation with the jump part of the prices:

apP(t) ¢ (1‘7 - MUP ) (t)

= —d(m — dimVUP
P T — —d(m.p)(t) — dm"", p) (1), (151)

where mY? (t) = log(MYF(t)). Since (151) prices all assets, if we consider a risk-neutral asset, we

have all of the of the quadratic variation terms equaling zero:

app(ty _ [ (M-M77) @)
Py(t—) 8 M (t—)MUP(t—) Tl (152)
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Consequently, the risk premium on a asset ¢ with discounted price P; is

dpi(t)  dPp(t) _
B—) Py - dme® — d(m"", p)(t) (153)

Since MYP(t) and hence mY ¥ (t) are purely discontinuous processes, the second quadratic variation

does not depend upon p”(t). That is

dB(t)  dPy(t) -
E |:Pz(t—) — Pf(t—) ‘ft—:| = - d(m’pD +p‘]>(t) _ d<mUP7pJ>(t), (154)
O

APPENDIX D NEWS PREMIA: EMPIRICAL RESULTS

Tame1zIa&x403+735%§%1{F0M134(OLQ
t It

Intercept 1{FOMC}; log (o7 +17) log( o ) log (o7 +77) log( - ) R?

oF 17 ;17

0.01 0.88 0.26 %

[0.23] [2.94]
—4.55 —0.46 2.67%
[5.45) [-5.58]

1.02 1.65 1.61%

[5.81] [6.48]
—3.17 —0.39 1.13 3.35%
~3.94] (—4.12] 14.06]
—1.27 —-0.19 3.91 0.29 3.42%
[—0.54] [~0.85] 1.07] [0.80]
—4.73 1.09 —0.47 3.09 %
[5.88] [3.55] [-6.11]
—-3.40 1.00 —0.40 1.07 3.710%
[—3.96] 3.38) [~5.08] 13.94]

0.98 —0.23 3.55 0.26 3.74%

[~0.68] [3.30] [-0.95] [0.88] [0.65]

APPENDIX E  SIMULATION RESULTS
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Figure 12: Continuous-Time Simulation Results without Microstructure

(Average every 5 minutes)
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Figure 13: Continuous-Time Simulation Results with Microstructure
(Average every 5 minutes)
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APPENDIX F' VOLATILITY: EMPIRICAL RESULTS
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Table 13: Vector Autoregression Models

| log(7) log(77)
VAR(1)
Intercept —0.84 (-1.04,-0.64) —1.80 (—1.98,—1.62)
log(c? ;) 0.56 (0.52, 0.59) 0.34  (0.31, 0.38)
log(v7 1) 0.38 (0.33, 0.42) 0.48 (0.44, 0.52)
R? 24 % 72%
Innovation 0.33 0.19
Covariance ( 0.19 0.27 )
VAR(6) — Chosen by SIC
Intercept —0.33  (—0.54,-0.11) —0.88 (—0.73,-0.69 )
log(c? ;) 0.40 (0.36, 0.44) 0.24 (0.24, 0.27)
log(77 1) 0.25 (0.20, 0.29) 0.30  (0.19, 0.34)
logo? , 0.11 (0.07, 0.16) 0.01 (-0.06, 0.04)
log 7 0.01  (—0.03, 0.06) 0.13 (0.09, 0.17)
log(o? ) 0.05 (0.01, 0.09) —0.01 (-0.12, 0.03)
log(77 3) —0.00  (—0.05, 0.04) 0.06 (0.02, 0.10)
logo? , 0.07  (0.02, 0.11) —0.03 (—0.08, 0.01)
log~y? 4 0.01 (—0.03, 0.06) 0.11 (0.05, 0.15)
log(o? 5) 0.03 (-0.01, 0.07) —0.02 (-0.04, 0.02)
log(77 :) 0.04 (—0.00, 0.09) 0.14 (-0.01, 0.18)
R? 76 % 75%
Innovation 0.31 0.17
Covariance < 0.17 0.24 )
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Table 14: E [r:pt ‘ 1{FOMC}t,a§ + %;27 22?;2
Ty 7%

} (WLS)

2 2 _
Intercept 1{FOMC}; log (o7 +77) log (0#7’%) log (o7 4 77) log (szi%f) R2
0.34 0.26 0.05 %
[14.43] [1.44]
—2.68 —0.28 1.83%
[—6.93] [—7.77]
0.68 0.59 0.53 %
[8.49] [4.14]
—2.29 —0.27 0.51 2.20%
[—5.46] [—7.19] [4.59]
2.62 0.18 8.62 0.75 2.85%
[2.48] [1.89] 4.92] [4.63]
—2.76 0.41 —6.76 1.93%
[—6.76] [2.13] [—7.47]
—2.37 0.39 —0.28 0.51 2.28%
[—5.51] [2.06] [—7.17] [3.60]
2.38 0.36 0.17 8.50 0.74 291%
[1.66] [2.55] [1.21] [3.65] [3.39]

Table 15: News Premia Estimates

Regressors

Intercept 1{FOMC}; log (o7 +77) log( o )

7.2
o+

0.34
[14.43]
2.95
[6.61]
—2.45
[—5.12]
—5.04
[—0.58]
2.95
[6.62]
—5.10
[~5.10]
0.14
[0.20]

0.26
[1.44]

0.15
[0.85]
0.33
[1.54]
0.25
[1.25]

0.24
[5.88]

0.14
[2.68]
0.24
[5.90]

0.16
[3.66]

—5.01
[—5.86]
—4.15
[—4.93]

—5.02
[—5.81]
—3.52
[—5.35]




Table 16: Instrument Variables: First Stage Regression

‘ ~2
b i=log (07 +47), ¢ = log (7

Regressand ‘ Intercept @1 Gt b5 Gt—25  Pi-1 Y2 Y5 o5 Y1 R? F
—0.44 0.26 6.58 % 62.2
(-25.84]  [7.88]
o < 2«,;% 2) —0.28 0.18 0.16 0.12 0.06 11.53 % 110.0
T+ [~9.48]  [8.95 [7.14] [6.37] [3.39]
—0.61 0.14 0.13 0.10 0.07 —-0.06 —0.00 0.01 0.02 14.63 % 248.1
[-839]  [838] [6.86] [5.51] [4.07] [-6.80] [-0.25] [1.91] [3.14]
—0.23 0.73 0.11 0.10 0.07 —-0.02 —0.00 0.01 0.02 0.06 15.49 % 525.4
[-235  [7.05] [6.51] [5.43] [3.90] [-1.51] [-0.07] [1.87] [3.34  [5.73]
—2.10 0.19 66.28%  1986.4
(~10.85] [44.57]
o (02 n 72) —0.57 0.61 0.17 0.13 0.04 79.19% 7712.2
i+ [—4.94] 26.42] [8.96] [8.55] [4.07]
—0.59 —0.15 0.00 0.07 0.06 0.60 0.16 0.13 0.05 79.27 %
[-4.99] [-347] [0.11] [1.79] [1.65] [27.95 [8.80] [8.92]  [4.40]
—1.31 —1.23 0.02 0.07 0.07 0.53 0.16 0.13 0.05 —0.11 79.43 % 20140
[-5.84] [-5.05 [0.63 [1.91] [1.92] [1891] [8.70] [8.92] [4.70] [-4.43]
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Table 17: News Premia Estimates: Other Instruments

Regressors Instruments
Intercept 1{FOMC}; log(o? +~7) IOg(a;;E»/f) 1{FOMC}, log( Ufjiiwl}flz) e log(o? , +77)) ... IOg(a;%_’jf-;;«;ﬁ, )log(o? , + 7))
| 1€{1,2,5,25}
3.05 0.25 v
[6.83] 6.07)
3.01 0.25 v v v v
[6.03] [6.77]
—2.02 —4.21 v
[~3.99] [—4.63]
—2.05 —4.28 v v v v
[5.28] [-6.20]
0.25 0.17 —3.47 v v v v
[0.36] 3.83)  [-5.01]
0.11 0.25 0.16 —3.57 v v v v
[0.14] [1.24] 3.59]  [-5.02]
| I=1
3.10 0.25 v
[6.85] [6.10]
—2.71 —5.44 v
[—2.86] [—3.20]
—1.43 0.11 —5.22 v v
[~0.84] [1.35)  [-2.94]
—1.03 0.29 0.12 —4.76 v v v v
[—0.76] [1.36] [1.68] [—3.56]
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Table 18: News Premia Estimates in Levels

(Volatility is measured in yearly terms. (252 * daily)).

le€{1,2,5,25}.
Regressors Instruments
Intercept 1{FOMC};  of v (0f)(h7) | {FOMC}, iy Vi (o) ()
0.28 0.08 v
[8.85] [3.11]
0.28 0.08 v v v
[8.80] [2.74]
0.27 0.07 v
[7.52] [2.53]
0.24 0.10 v v v
[6.63] [3.33]
0.31 0.16 —0.09 v
[7.25] [1.35] [—0.77]
0.24 0.02 0.09 v v v
[5.57] [0.22]  [1.05]
0.23 0.36  —0.50 —0.00 v v v
[5.75] [1.39] [—1.14] [1.53]
0.26 0.59 —-0.34 —0.01 v v v
[5.69] [2.78] [—2.00] [-3.18]
0.27 0.34 0.71 —-0.45 —0.01 v v v
[5.97] [1.72] [3.07] [—2.41] [-3.38]

¥8

AHIONVS 10V ]



Table 19: News Premia Estimates: Robustness

Regressors Instruments

b »\/2 "(2 : 10 ’ Arryzilr .
Intercept  1{FOMC}; log(o? +7) log(;77) | {FOMC} log(s—m—) ... log(of , +77 ). g(”f"+”’5*§)
SR log(a7_; + 7))

Sub-period Analysis

20032007 —2.59 0.69 0.08 ~6.93 v v v v
[—0.67] [1.58] [0.36] [—2.05]

20082012 0.17 0.79 0.06 ~1.56 v v v v
[0.10] [1.82] [0.55] [—1.33]

2013-2007/9 |  3.71 —0.26 0.40 ~1.94 v v v v
[2.50]  [-1.05] [4.40] [—1.66]

Unweighted Analysis

0.63 0.06 v v v v
[0.82] [0.77]
0.03 —0.04 v 7 7 v
[0.06] [—0.04]
—0.77 —0.02 —1.14 v v v v
[—0.62] [—0.17] [—1.50]
—1.42 0.93 —0.09 —0.81 v v 7 /
[~1.13] [3.02] [—0.99] [—0.89)
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