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Abstract

Announcements and other news continuously barrage financial markets, causing asset prices
to jump hundreds of times each day. If price paths are continuous, the diffusion volatility
nonparametrically summarizes the return distributions’ dynamics. However, this is not true
in the empirically-relevant case involving price jumps. To address this impasse, I derive both
a tractable nonparametric continuous-time representation for the price jumps and an implied
sufficient statistic for their dynamics. This statistic — jump volatility — is the instantaneous
variance of the jump part and measures news risk. The realized density then depends, exclusively,
on the diffusion volatility and the jump volatility. I develop estimators for both and show how
to use them to nonparametrically identify continuous-time jump dynamics. I provide a detailed
empirical application to the S&P 500 and show that the jump volatility premium is less than
the diffusion volatility premium.
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1. Introduction

The study of individuals’ reactions to time-varying risk forms the core of modern finance and macroe-
conomics. Asset pricing, portfolio allocation, and performance evaluation all require investors to
asses the risk they face in real time. Moreover, optimal financial regulation requires trading off risk
and return at the societal level, and real-time risk measures form its core as well. The most general
measure of this risk is the distribution of future returns as a function of the information available.

About twenty years ago, Barndorff-Nielsen and Shephard (2002) and Andersen, Bollerslev,
Diebold, and Labys (2003) substantially enhanced our understanding of the volatility by providing
the nonparametric Realized Volatility estimator for the integrated diffusion volatility. Moreover,
they showed that as long as price paths are continuous, the diffusion volatility entirely determines
the price’s continuous-time martingale dynamics. They also derived closed-form expressions for the
discrete-time distributions as functions of integrated diffusion volatility by time-aggregating the
continuous-time measures.

However, hundreds of quantitatively relevant news releases strike financial markets every day
and cause the prices to jump. Aït-Sahalia and Jacod (2009a, 2009b, 2012a) even show that models
with infinitely many jumps fit the data better than models with only finitely many jumps do.
These jumps are also quite economically significant, (Andersen, Bollerslev, and Diebold 2007). For
example, we need them to price derivatives well, (Pan 2002; Branger, Schlag, and Schneider 2008),
and they play a fundamental role in driving the variance risk premium, (Todorov 2010; Drechsler
2013).

At present, however, no parsimonious representation with nonparametrically identified dynamics
exists for jump processes. Gallant and Tauchen (2018) estimate a jump density after rescaling the
returns using Barndorff-Nielsen and Shephard’s (2004) bipower-variation estimator. However, they
truncate away all the jumps above a shrinking threshold as they must because they rely on Todorov
and Tauchen (2014). Consequently, this procedure provides a great deal of information about small
jumps but cannot address the dynamics of large jumps. Conversely, Bollerslev, Todorov, and Li
(2013) examine large jumps, but gain identification by exclusively focusing on the static problem.
This paper studies both small and large jumps and allows for arbitrary dynamics.

To address this identification problem, I derive both a tractable nonparametric continuous-
time representation for the price jumps and an implied sufficient statistic for their dynamics. This
statistic — jump volatility — is the instantaneous variance of the jump part and measures news risk.
The resulting realized density then depends, exclusively, on the diffusion and jump volatilities in
continuous-time. In other words, volatilities control all of the distribution’s short-horizon dynamics.
I then time-aggregate this representation and derive closed-form expressions for the discrete-time
densities and volatilities.

I nonparametrically identify the jump dynamics in the presence of stochastic diffusion volatility
by deriving the first estimator for any instantaneous jump variation measure. I time-aggregate the
instantaneous estimators to estimate the daily diffusion and jump volatilities.

I apply my estimators to the S&P 500 and first show that the diffusion volatility commands
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an economically and statistically significant premium, as in Brandt and Kang (2004) and Lettau
and Ludvigson (2010). This risk premium literature has more recently focused on higher-order
risk premia relationships, often analyzing them in terms of volatility of volatility or jumps, (Cheng,
Renault, and Sangrey 2019; Dew-Becker, Giglio, and Kelly 2019). I show that the jump volatility
premium is substantially less than the diffusion volatility premium.

The remainder of the introduction fixes ideas and explains the close connection between discon-
tinuous information flows and jumps in asset prices. Section 2 lays out the data generating process,
while Section 3 proves the representation theorems. Section 4 derives the estimators, and Section 5
characterizes their finite-sample performance in simulations. Section 6 describes my dataset, and
Section 7 provides new stylized facts concerning the jump volatility dynamics. Section 8 shows
that the jump volatility premium is less than the diffusion volatility premium. Section 9 concludes.
The appendices contain proofs, robustness checks, and additional empirical results.

1.1. What Causes Jumps?

Aït-Sahalia and Jacod (2009a) find jumps drive ≈ 40% of the squared variation in individual
equities and ≈ 10% of the variation in the market index using a ratio of bipower-type estimators.
Additionally, almost every paper that explicitly tests for the degree of activity finds infinitely-
active jumps, or at the very minimum a massive number, (Aït-Sahalia, Mykland, and Zhang 2005;
Bakshi, Carr, and Wu 2008; Aït-Sahalia and Jacod 2009a).1 From both a modeling and pricing
perspective, a large number of jumps and infinitely-many are effectively equivalent in practice, as
shown in Section 3.3.3. Even if the literature has not reached a consensus on the precise number
and magnitude of the jumps, jumps are indisputably ubiquitous and crucial to understanding price
dynamics.

There are two equivalent characterizations of jumps. First, a jump is a discontinuity in the
price process — the price changes by such a large amount over such a small interval that we cannot
draw a continuous line through it. However, this is a mathematical definition; we would like an
economic characterization.

Various authors, such as Andersen, Bollerslev, Diebold, and Vega (2003) and Lahaye, Laurent,
and Neely (2011), argue that jumps are responses of prices to news releases. These papers start
with a series of news items that they a priori consider important, such as FOMC announcements,
and show that prices react effectively instantaneously. However, many different sources cause dis-
continuities in investor’s information sets. Other sources include Congressional decisions, a startup
announcing a new product line on Twitter, effectively anything in a Bloomberg or Associated Press
feed relevant for asset pricing, even private communications between financiers. The last example
highlights the utter impossibility of listing all the potentially relevant events. We cannot construct
investors’ actual information sets. (Note, this paper uses news to refer to any headline news, i.e.,
it refers to any discontinuous change in information, not just traditional news sources such as

1. The single exception is Christensen, Oomen, and Podolskij (2014), whose procedure I show is biased downwards
when jump variation is high in Appendix C.1.
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newspapers. It does not refer to information that takes time to digest.)
As these examples illustrate, news often come at unpredictable times, and only a few investors

may observe them, and so a priori choosing which news items are relevant necessarily excludes
many relevant items. Besides, there is no reason to assume that the resultant price change is in
any way substantial. Many news items cause a small, but measurable, impact on prices.

The connection between news and jumps is rather intuitive, and the empirics in these papers
substantiate it. However, the connection is even more fundamental. Delbaen and Schachermayer
(1994) show no-arbitrage implies prices are semimartingales.2 Under some minor technical condi-
tions, this implies that prices jump if and only if the information surprises us, (Huang 1985), i.e.,
the information available at τ cannot be predicted by the information we had before τ .

This result also explains why not all price changes are jumps. Not all information can be
processed instantaneously. Some information takes time to process before the market participants
can use it effectively. For example, after a firm announces its earnings, the headline reveals much
of the information. However, many articles still analyze what each release implies about both the
stock in question and other related assets. As various investors update their beliefs and buy or sell
accordingly, other market participants see the information that is now revealed by the prices and
also buy or sell. This process changes the asset’s price, and it takes time. Gürkaynak, Kısacıkoǧlu,
and Wright (2018) distinguishes these two types of information flows and show that doing so
substantially improves forecasting performance.

2. Data Generating Process

Models of prices differ along two different dimensions. They can be either continuous or discrete,
and they can be either in continuous-time or in discrete-time. I write down a continuous-time DGP
with jumps and derive the implied discrete-time representation. I also discuss the purely continuous
special case that my DGP nests to provide a point of comparison.

2.1. Continuous-Time DGP

We know from Dambis (1965) and Dubins and Schwarz (1965) that continuous Itô semimartingales
are stochastic volatility diffusions. That is, for some drift, µ(t), and diffusion volatility, σ2(t), we
can represent the log-price process as dp(t) = µ(t) dt+σ(t) dW (t), where W (t) is a Wiener process.

The standard nonparametric way to add jumps to these models is to assume that prices are
Itô semimartingales. This representation is quite general because it only requires that prices are
semimartingales and each of the components of the process have time-derivatives. The log-price
being an Itô semimartingale implies that the jump part is an integral with respect to a Poisson
random measure. Let n be a Poisson random measure with associated compensator, ν. The function
δ(s, x) controls the magnitude of the process. In general, the triple (δ, n, ν) is not unique, which

2. Throughout this paper, I use no-arbitrage to refer to no-free-lunch with vanishing risk as is standard in
continuous-time finance.
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allows us to pick a particularly useful representation later.

Definition 1. Jump-Diffusion DGP (Grigelionis Form of an Itô Semimartingale)

p(t) = p(0) +

∫ t

0
µ(s) ds+

∫ t

0
σ(s) dW (s) +

∫ t

0

∫
X
δ(s, x)1{∥δ(x, s)∥ ≤ 1}(n− ν)(ds, dx)

+

∫ t

0

∫
X
δ(s, x)1{∥δ(x, s)∥ > 1}n(ds, dx)

I simplify Definition 1 by adding the following assumption.

Assumption Square-Integrable. The process, p(t), is locally-square integrable.

Assumption Square-Integrable is relatively innocuous in practice because it holds whenever re-
turns have conditional variances. Although many high-frequency papers initially allow for jumps
that are so large no compensator exists, they almost always restrict themselves to processes that
satisfy Assumption Square-Integrable when they derive estimators. Making Assumption Square-
Integrable now simplifies notation because it implies that the jump measure has a predictable com-
pensator. Assuming without loss of generality that p(0) = 0 gives p(t) =

∫ t
0 µ(s) ds+

∫ t
0 σ(s) dW (s)+∫ t

0

∫
X δ(s, x)(n − ν)(ds, dx). I also assume without loss of generality that n is a standard Poisson

random measure.
This representation is quite general and can handle a great variety of different price processes.

In particular, it allows for both finite and infinite variation, and also places no restriction on the
Blumenthal-Getoor index. In fact, Aït-Sahalia and Jacod (2012b) uses Definition 1 in their study
of Blumenthal-Getoor indices.

However, the representation in Definition 1 is rather intractable and not identified. For each
τ , δ(τ, ·) is a function. For each set A ⊂ X, we have a Poisson process. It takes infinitely-many
finite-sized open sets to partition R. Each of these infinitely-many sets has a time-varying Poisson
intensity. The δ function combines these intensities. To estimate this process, we would have to
estimate these infinitely-many intensity parameters for each τ using only one realization.

2.2. Discrete-Time DGP

Before I relate the discrete- and continuous-time returns, we must know what a discrete-time return
is. The discrete-time return is just the change in (an increment of) the price process over some
length of time, say a day.3 Throughout, I use subscripts to refer to daily objects, and functional
notation to refer to stochastic processes. I index each variable by the time it first becomes known
to the investor, i.e., becomes measurable in the filtration induced by the prices. For example, rt is
the daily return on date t, while p(t) is the log-price at time t: rt :=

∫ t
t−1 dp(t).

This return has a density — h— in each period given the available information at the end of the
day before — Ft−1 — giving rt | Ft−1 ∼ h (rt | Ft−1). This predictive density fully characterizes the

3. Throughout, I focus on daily returns whose length I normalize to one, but there is nothing special about a day.
We could perform the same analysis over any discrete length of time.
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statistical risk that investors face. In particular, any statistical measure of risk, such as Expected
Shortfall or Value-at-Risk, is a statistic of this density.

Daily returns are not very well-behaved objects in that they are unpredictable and their dis-
tributions vary substantially over time. Furthermore, we only observe one observation for each
h(rt | Ft−1). Since Ft−1 grows each day, h(rt | Ft−1) is a function-valued time-varying parameter.
Modeling such parameters is quite difficult. Hence the literature (for example, the ARCH and
GARCH models) focuses on representations for h(rt | Ft−1) in terms of a well-behaved sufficient
statistic for the dynamics. The most common choice for xt is some measure of volatility.

These models use xt to separate h(rt | Ft−1) into three parts. The first — xt — is well-behaved
and predictable and hence easily forecastable. The second is noise as far as prediction is concerned
and has an associated density — f . It affects the risk investors face but not the density’s dynamics.
The third part — G — is a process governing xt’s dynamics.

Both f and G are fixed across-time, and G is simple if we chose xt well. This gives rt | Ft−1 ∼
h(rt | Ft−1) =

∫
xt
f(rt |xt) dG(xt | Ft−1), replacing the question how should we model h(rt | Ft−1)

with three related questions. What should we use for xt? What should use for f? What should we
use for G?

For example, consider the following simple stochastic volatility model: rt ∼ σtN (0, 1) and
log
(
σ2t
)
= ρ log

(
σ2t−1

)
+σσN (0, 1). This model uses volatility, σ2t , as xt, f is a Gaussian distribution,

and σ2t follows an AR(1) process in logs.
Now that we have a discrete-time DGP, we can define the realized density.

Definition 2 (Realized Density).
RDt := f (rt |x)

∣∣∣
x=xt

Just as the realized volatility, RVt, is the particular value of the volatility that realizes in a
given day, the realized density, RDt, is the conditional density that realizes that day. For example,
in the model given above, the realized density is f(rt |xt) = f(rt |σ2t ).

The realized density is useful because it separates the dynamic and static parts of the process.
Besides, it is precisely the part of the likelihood that high-frequency data identifies, as shown in
Section 4. Once we have RDt, we only need to model G. This is much simpler than modeling
h(rt | Ft−1) directly as long as we chose a well-behaved xt.

3. Modeling Jump Processes

The literature usually chooses a xt that is some volatility measure. This section constructs a new
volatility measure. This measure, unlike the jump part of the quadratic variation (i.e., the sum
of squared jumps), is an ex-ante measure. This distinction is fundamental to the representation
constructed below.
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3.1. Jump Volatility

One way to define the instantaneous diffusion volatility, σ2(t) is as follows; σ2(t) is the appropriately
standardized variance of the diffusion part of the process over a shrinking interval.4

Definition 3 (Instantaneous Diffusion Volatility).

σ2t :=
1

∆
E
[∣∣pD(t+∆)− pD(t)

∣∣2 ∣∣∣Ft−

]
One key subtlety in Definition 3 is that we are only using the information available before t.

Variances are forward-looking operators. This subtlety is not essential in the diffusion case. The
ex-ante and ex-post measures coincide, and so the literature has not stressed it. In the jump case,
however, it is fundamental.

Diffusion volatility’s key advantage is that we can time-aggregate it easily. The daily volatility
is just the integral of the high-frequency volatility: σ2t :=

∫ t
t−1 σ

2(t) ds. The goal moving forward
is to construct a sufficient statistic for the jump dynamics that also has this aggregation property.
To do this, I define the jump volatility — γ2(t). Volatilities are variances, and so we can construct
the jump analog to Definition 3. I substitute the diffusion part of the prices, pD(t), with the jump
part — pJ(t). In other words, the instantaneous jump volatility is the local variance of pJ(t).

Definition 4 (Instantaneous Jump Volatility).

γ2(t) :=
1

∆
E
[∣∣pJ(t+∆)− pJ(t)

∣∣2 ∣∣∣Ft−

]
.

The integrated jump volatility is defined in the obvious way: γ2t :=
∫ t
t−1 γ

2(s) ds. We can also
define γ2(t) in terms of Definition 1. The jump volatility is the time-derivative of the predictable
quadratic variation of the jump part of the process.

Remark 1 (Jump Volatility and the Predictable Quadratic Variation). Let p(t) and
∫
X δ2(t, x) dx

be Itô semimartingales satisfying Assumption Square-Integrable. Also assume that
∫
X δ2(t, x) dx is

cádlág. Then the following holds where ⟨pJ⟩(t) is the predictable quadratic variation of pJ(t):

γ2(t) = lim
∆→0

1

∆

∫ t+∆

t

∫
X
δ2(s, x)ν(dx, ds) = lim

∆→0

1

∆
(⟨pJ⟩(t+∆)− ⟨pJ⟩(t)).

The are three main advantages of γ2t over the jump part of the quadratic variation. First, since
jump processes are not absolutely continuous, there is no ex-post analog to γ2(t). We cannot take
the quadratic variation’s time derivative like we can take the predictable quadratic variation’s time-
derivative. Second, by conditioning on γ2(t), I construct a closed-form nonparametric continuous-
time representation for p(t) in Section 3.3. This representation avoids any truncation. Todorov and
Tauchen (2014) must truncate all of the jumps above a shrinking threshold to derive their results

4. I use superscript D to refer to the diffusion part of the process.
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while using an ex-post measure. As a final advantage, high-frequency data nonparametrically
identify both γ2(t) and γ2t . Section 4 shows this by constructing consistent estimators for them.

3.2. Static Jump Processes (Variance-Gamma Process)

The next section constructs the static model that my model reduces to when there are no dynamics.
Define N(t) as the process that determines when pJ(t) jumps:

N(t) :=
∑
s≤t

1{
∣∣pJ(t)− pJ(t−)

∣∣ > 0}. (1)

Let κ(t) := {pD(t) |N(t) ̸= N(t−)} be the process that controls the jump magnitudes, i.e, κ(t) is
an ordered collection of N (0, 1) random variables. Then the jump part of the prices process has
the form: pJ(t) =

∑
s≤t κ(s)∆N(s).

This equation’s variability comes from two places: the number of jumps and their magnitudes.
Since we are in a time series context, the number of jumps and their locations carry the same infor-
mation. Hence, we can rewrite the jump volatility as follows using the law of iterated expectations
(where we assume N(τ) = 0):

γ2(τ) = lim
∆→0

E

[
|pτ+∆ − pτ |2

∆

∣∣∣∣∣Fτ

]
= lim

∆→0
E

E
N(τ+∆)∑

i=1

Var (κi(τ))
∆

∣∣∣∣∣∣Fτ , N (τ +∆)

 ∣∣∣∣∣∣Fτ

 . (2)

We we can simplify this using the definition of N(t): γ2(τ) = lim∆→0 E[N(τ+∆)
∆ ]E[κ(τ)2] = ∆

∆ = 1.
That is the variance of the jump process is the intensity multiplied by the magnitude’s variance.
Changing the jump intensity or expected magnitude alters the variance of pJ(t) in precisely the
same way. This irrelevance is useful because the data do not identify the intensity and magnitude
functions but do identify the volatility. This lack of identification no longer affects our results if
we take E[N(t)] → ∞. In taking this limit, we must model the distribution of κ(t) properly so
that p(t) remains square-integrable.5 In particular, only finitely many jumps can exceed any fixed
ϵ > 0 in magnitude; otherwise, the price diverges. Consequently, we must shrink the size of the
increments towards zero as we let E[N(t)] → ∞.

3.3. Jump Process Representation Theorem

3.3.1. Itô Semimartingales

Recall the simplified Grigelionis form of the semimartingale: p(t) =
∫ t
0 µ(s) ds +

∫ t
0 σ(s) dW (s) +∫ t

0

∫
X δ(s, x)(n− ν)(ds, dx). I use the variance-gamma processes and the jump volatility discussed

above to simplify the representation for the jump part of the process. To do this, I introduce some
empirically-innocuous assumptions that are not entirely standard in the literature. First, p(t) must
have infinite-activity jumps. In other words, we need at least one jump in every finite interval. This

5. Just letting p(t) be an ordered collection of N (0, 1) variables does not work.
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assumption implies two results. First, we do not need to track the probability that there are no
jumps in a specific interval. Second, it identifies γ2(t). If we consider an interval without jumps,
we obviously cannot estimate γ2(t) because there is no variation to identify it.

Assumption Infinite-Activity Jumps. The p(t) process has infinite-activity jumps.

Assumption Infinite-Activity Jumps sounds very restrictive at first and contradicts the com-
pound Poisson assumption often used in the literature. However, it is innocuous for two reasons.
First, the literature is essentially unanimous in arguing that jumps are quite common in the data,
as discussed in Section 1. Second, standard variance-gamma processes are limits of compound
Poisson processes. As long as we have a sufficient number of jumps, the representation will work
well in practice. Section 3.3.3 further discusses this.

The last assumption requires jump times to be unpredictable.

Assumption No Predictable Jumps. No stopping times τ exists such that the event p(τ) ̸=
p(τ−) is contained in the information set Fτ−.

Having laid out the assumptions, I state the first main theorem. I later prove a more general
proposition, Theorem 2. However, I have now described the environment sufficiently to make the
result understandable. Stating the result now should make it easier to understand the structure of
the next section. Throughout I will use L(t) to refer to the standard variance-gamma process, i.e.,
a variance-gamma process where all of the scale parameters equal one and all location parameters
equal zero. This standard variance-gamma process is a Wiener process time-changed by an expo-
nential process, making it the process generalization of the Laplace distribution.6 Its increments
are Laplace random variables.

Theorem 1 (Locally Square-Integrable Itô Semimartingales as Integrals). Let p(t) be an Itô semi-
martingale with interval support satisfying Assumptions Square-Integrable, Infinite-Activity Jumps,
and No Predictable Jumps. Then we can represent p(t) as

p(t) =

∫ t

0
µ(s) ds+

∫ t

0
σ(s) dW (s) +

1√
2

∫ t

0
γ(s) dL(s).

This representation replaces the function δ(τ, ·), with a single scalar γ2(τ) for each τ . In addition
the integrator is switched from a compensated Poisson random measure, (n − ν), to a standard
variance-gamma process, L(t). As in the stochastic-volatility diffusion case, Theorem 1 does not
imply that the innovations to γ(s) and p(t) are independent.7 Hence, this representation can exhibit
properties such as skewness and infinite variation that the variance-gamma process does not exhibit.

6. The Laplace distribution can be represented as a normal random variable with an exponentially-distributed
variance.

7. Consider the geometric Brownian motion, dX(t) = X(t−) dW (s), the innovations to the volatility and the
process are the same.
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3.3.2. Time-Change Representation

The proof of Theorem 1 relies on Theorem 2 and its corollaries, which I have not yet proven. In
practice, Theorem 2 is the fundamental result. The other results are straightforward implications
of it. Theorem 2 is a time-change representation for jump processes and is closely related to the
time-change representations in the diffusion case. Consequently, let us recall those results.

The validity of the standard diffusion representation for general continuous martingales is im-
plied by the Dambis-Dubins-Schwarz theorem, which shows that any continuous martingale time-
changed by its predictable quadratic variation is a Wiener process. To put it in mathematical
notation, Dambis (1965) and Dubins and Schwarz (1965) says that pD(t) L

=W (
⟨
pD
⟩
(t)), where the

equals sign with an L above it refers to equality in law. This equation evaluates the Wiener process
at the random-clock ⟨pD(t)⟩.

The crucial difference between the jump part and the continuous part of a semimartingale is
that the variation in the continuous part comes from variation in magnitudes, while the jump part
has two sources of variation: the magnitudes and the locations. Intuitively, the Dambis-Dubins-
Schwarz theorem separates the variation in any continuous martingale into a predictable part (the
volatility) and i.i.d. innovations. By doing this, the martingale becomes a sum of appropriately
scaled independent random variables. In other words, it is a “central limit theorem.”8 In fact, one
method to prove static central limit theorems is deriving them from this result.

In the jump case, though, the dynamics are more complicated. Not only do the magnitudes vary,
but the locations also vary. This is why the data do not identify existing time-change representations
for jumps, such as those in (Monroe 1972; Geman, Madan, and Yor 2001; Barndorff-Nielsen and
Shiryaev 2010). When we take the infill asymptotics, variation in both the jump sizes and locations
still matters in the limit. In other words, a jump martingale is a sum of a random number of
random summands. If the number of summands is geometrically-distributed, various geometric-
stable central limit theorems tell us how the sum behaves as the expected number of summands
approaches infinity, (Mittnik and Svetlozar 1993).

We can generalize the Itô semimartingale assumption in Theorem 1 by only requiring that pJ(t)
is an integral with respect to a Poisson random measure. In particular, p(t)’s characteristics do not
need to have time-derivatives.

Theorem 2 (Time-Changing Jump Martingales). Let pJ(t) be a purely discontinuous martingale
with interval support satisfying Assumptions Square-Integrable, Infinite-Activity Jumps, and No
Predictable Jumps that can be represented as H ∗ (n − ν) where H(t) is a predictable process, n a
Poisson random measure, and ν its predictable compensator with Lebesgue base Lévy measure.

Then pJ(t) time-changed by its predictable quadratic variation is a standard variance-gamma
process. In other words, pJ(t) L

= L
(⟨
pJ
⟩
(t)
)
.9

8. Technically, this result is a law of large numbers in the diffusion case, not a central limit theorem because the
convergence here is almost sure instead of in law.

9. Note, equality here only holds in law unlike in the Dambis-Dubins-Schwarz theorem, where it holds almost
surely.
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The proof of this theorem is in Appendix A. I present the intuition here. The first result we
must establish is that the jump locations and magnitudes are conditionally independent. Thank-
fully, the Poisson random measure representation implies that the location and magnitude risk are
independent given Ft−.

Given some time τ I condition on the first jump after τ . I then show that the magnitudes are
a continuous process in this new filtration after the appropriate time-change. Thus, I can apply
the Dambis-Dubins-Schwarz theorem there, which results in a time-changed Wiener process. Since
a Poisson random measure is generated by Poisson processes and the times between jumps for a
Poisson process are exponential random variables, by keeping careful track of how the exponential
time-changes aggregate, we get that the time-change coming from the locations is a standard gamma
process. The quadratic variation of p(t) combines the quadratic variations arising from each of two
time-changes. Therefore, the initial process is a time-changed standard variance-gamma process.

Perhaps the most surprising part of Theorem 2 is that it implies we can “borrow-strength” from
the small-jumps to learn about the large jumps without making any parametric assumptions. At
first glance, this likely appears difficult to believe. This implies that local square-integrability is
a stronger assumption than we might first expect. The Davis-Burkholder-Gundy inequality lets
us bound the supremum of the deviations semimartingale by the 2nd-moment. That is, we can
control all moments of the process if the 2nd moment is bounded. If all the moments between two
representations, the distributions will as well.

Analogously, the standard central limit theorem and the Dambis-Dubins-Schwarz theorem are
examples square-integrability gives us parametric results in the continuous case, and the geometric
central limit theorems are examples where we get parametric results in the static analogue to a
jump process. Perhaps, it should not be too surprising that we can generalize those results to the
stochastic process case, just like we can generalize the standard central limit theorem.

Time-changed results are not particularly intuitive, and so we would like an integral represen-
tation as well. Corollary 2.1 is the jump analogue to stochastic volatility diffusion representations
for continuous martingales.

Corollary 2.1 (Jumps Processes as Integrals). Let pJ(t) be a purely discontinuous Itô martingale
with interval support satisfying Assumptions Square-Integrable, Infinite-Activity Jumps, and No
Predictable Jumps. Then pJ(t) = 1√

2

∫ t
0 γ(s) dL(s), where L is a standard variance-gamma process.

3.3.3. Processes with Finite-Activity Jumps

The most controversial assumption I make is Assumption Infinite-Activity Jumps. Various authors
have claimed that the data have a large, but finite, number of jumps in each period. One might
wonder what happens if the data violate this assumption. In that case, given an interval I, the
price process is a point mass at zero if it does not jump. If the price does jump, we can use similar
arguments to those above to construct a time-changed Wiener process. In other words, the ex-ante
distribution over each interval is a mixture of a point mass at zero and a scale Gaussian mixture
where the mixing weights between the two parts are the probability of the jump in that interval.
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Theorem 3 (Time-Changing Finite-Activity Jump Martingales). Let pJ(t) be a compound Poisson
martingale with interval support and mean-zero jump magnitudes.10 Let ν denote the intensity
process, and ρ(t) denote the time of the next jump. Then

pJ(t) =

W
(⟨
pJ
∣∣ ρ⟩(t)) with intensity ν

δ0(t) with intensity 1− ν.
(3)

The critical difference between Theorem 2 and Theorem 3 is that we must keep track of the
probability of no jump realizing. Unlike the infinite-activity case, the data do not identify time-
change, and two states govern the process, not just one. The dependence of ⟨pJ | ρ⟩ on ρ disappears
in the infinite-activity case because for any interval I the probability of a jump occurring equals one.
Additionally, we need not directly assume that the magnitudes are mean-zero. We only require the
initial process to be a martingale because we need not worry about the process’s mean in intervals
without jumps in the infinite activity case.

The main benefit of Theorem 3 is that it implies that Theorem 2 is the limiting case of a
finite-activity process as the intensity approaches infinity (which is apparent in the proof of the
infinite-activity case). This result is useful because it implies that the representation in Theorem 1
approximates the true DGP well if the intensity is relatively large.

3.4. Deriving the Realized Density

Having derived the continuous-time representation, we can solve the time-aggregation problem
and derive the realized density. Barndorff-Nielsen and Shephard (2002) and Andersen, Bollerslev,
Diebold, and Labys (2003) concurrently derived the realized density in the diffusion case; although,
they did not use that term. They showed that if volatility and prices are uncorrelated, σ2t is a
sufficient statistic for the dynamics under some technical conditions and that conditional on σ2t ,
the return density is Gaussian.

This conditional Gaussianity separates the daily return distribution into a well-behaved volatil-
ity component and a Gaussian noise component. To relate it to the previous discussion, we have
the following decomposition for h(rt | Ft−1) if the price is a martingale:

f
(
rt
∣∣σ2t ) = f

∣∣∣∣∣
xt=[

∫ t
t−1 σ

2(s) ds]

= N
(
0,

∫ t

t−1
σ2(s) ds

)
. (4)

I now discuss the realized density in the case with jumps. Recall that dp(t) = σ(t) dW (t) +∫
X δ(t, x)(n−ν)(dx, dt). Conditional on σ2(t) and δ(t, ·), the jumps and diffusion parts are indepen-
dent. Consequently, returns are the sum of two conditionally independent components. Densities
of sums of independent components are convolutions of the summands’ densities. We know, as
discussed above, that the diffusion part is a Gaussian density whose variance equals the integrated

10. Compound Poisson processes do not have any predictable jumps and are locally-square integrable.
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diffusion volatility. Hence, we only need to develop a parametric expression for the jump part.

Let L(0, x) refer to the Laplace density with mean zero and variance x and recall that ∗ is the
standard convolution symbol. Then we have the following discrete-time representation.

Theorem 4 (Realized Density Representation). Let p(t) be an Itô semimartingale with inter-
val support satisfying Assumptions Square-Integrable, Infinite-Activity Jumps, and No Predictable
Jumps. Let σ2(t) and γ2(t) be semimartingales whose martingale components are independent of
the martingale component of p(t). Then

RDt = N
(∫ t

t−1
µ(s) ds,

∫ t

t−1
σ2(s) ds

)
∗ L
(
0,

∫ t

t−1
γ2(s) ds

)
, (5)

and the predictive density is

h (rt | Ft−1) =

∫
µt,σ2

t ,γ
2
t

RDt

(
rt
∣∣µt, σ2t , γ2t ) dG (µt, σ2t , γ2t ∣∣Ft−1

)
. (6)

The intuition behind Theorem 4 is the following. If γ2(t) was constant, we could pull it out
of the integral without affecting the distribution:

∫ t
t−1 γ(t− 1) dL(s) L

= γt−1√
2

∫ t
t−1 dL(s). Since

increments of the standard variance-gamma process are Laplace distributed, the second component
is distributed L(0, 1). Consequently, conditionally on γ2t−1, we have a Laplace distribution with the
specified variance. The

√
2 term arises because the scale of a Laplace distribution is the square

root of one-half the variance. We can replace the constant assumption on the volatilities with
independence conditions between the martingale components to recover the general case.

Integrating RDt out using its distribution G recovers (6) from (5). In practice, we likely want
to model G directly. This model has the same form as the various stochastic volatility / GARCH
type models in the diffusion case.

The primary assumption that Theorem 4 adds is the independence between the martingale
components. As in Andersen, Bollerslev, Diebold, and Labys (2003) We need this assumption to
time-aggregate the process because the marginal and conditional distributions given the volatilities
of p(t) must coincide. Importantly, this assumption restricts the leverage effect but does not
assume away all dependence. The volatilities and drift can be arbitrarily related. As long as it
takes a positive amount of time for the volatilities to affect the level of the prices or vice-versa, this
assumption is satisfied. Besides, the observed correlation between the martingale parts is close to
zero at high frequency as noticed by Aït-Sahalia, Fan, and Li (2013), who call it “the leverage effect
puzzle.”11

11. There is some evidence that this is an artifact of the estimation procedure, and so I leave to future work the
optimal way to bring it into my framework. One way to do this is by keeping track of this correlation (as Bandi and
Renò (2012) and Kalnina and Xiu (2017) do) and making Gaussian and Laplacian conditioning arguments.
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4. Estimation

This section constructs estimators for σ2(t) and γ2(t) and their daily analogs. As is standard, the
data do not identify the drift, and so we cannot estimate it. The proposed estimator for σ2(t) is
adapted from Jacod and Rosenbaum (2013). I show that their estimator is still valid under my
slightly more general assumptions. The estimator for γ2(t) is completely new. In particular, I
develop a consistent estimator for γ2(τ) for any fixed τ .12 This estimator is the first to consis-
tently estimate any instantaneous jump variation measure. This implies that high-frequency data
nonparametrically identify instantaneous jump dynamics.

4.1. Assumptions

I start by fixing notation and stating some assumptions. The instantaneous volatility estimators
take an appropriately defined average over an increasing number of increments over a shrinking
interval. In other words, for a given index — n, we have a triangular array of increments. To make
the notation even more complicated, we have both a true DGP with time-varying volatility and an
approximate DGP, whose volatility is locally constant.

This setup implies we must keep track of both triangular arrays as we take limits. I adopt the
notation used in Jacod and Protter (2012) for the most part. Specifically, I use ∆n

i p to refer to
a increment i in process p(t) of length ∆n, and I take limits with respect to n, that is {∆n

i p} is
a triangular array of increments of p(t). The assumptions used are very similar to the standard
ones used in the literature. Assumption HL is essentially Jacod and Protter’s (2012) Assumption
H. The assumption on the jumps is slightly more general and more straightforward.

Assumption HL. 1. µ(t) is locally bounded.

2. σ(t) is càdlàg (or càglàd).

3. γ(t) is càdlàg (or càglàd).

To reduce notation, I adopt the convention from the literature that i ∈ Z, i ≤ 0 =⇒ ∆n
i p = 0 to

make processes well-defined over the entire line, not just where we estimate them. This convention
sets the processes equal to zero outside of the relevant window.

4.2. Instantaneous Volatility Estimators

In this section, I show that the diffusion volatility that I uses is consistent under the same as-
sumptions I use elsewhere in the paper. The contribution here is admittedly small. Results under
very similar assumptions already exist in the literature. I include it here for rhetorical consistency;
having a single set of assumptions is useful.

The intuition behind the estimators’ convergence is that we are averaging the volatilities over
shrinking intervals that approach τ from the left so that we estimate the volatilizes’ left limit. Let

12. In general, much of the theory that I develop can likely be extended to stopping times, but I leave that for
future work.



Realized Densities 15

kn denote to the number of terms we averaging, I(i, n) := [(i − kn − 1)∆n, (i − 1)∆n], and ∆n
in
p

denote the change in p in I(i, n). If we choose a sequence i → τ , the interval approaches τ from
the left. Also, as p(t) is one-dimensional, the driving Wiener and variance-gamma processes can be
assumed to be one-dimensional without loss of generality.

Theorem 5 (Estimating the Instantaneous Diffusion Volatility). Let p(t) be an Itô semimartingale
with interval support satisfying Assumptions HL, Infinite-Activity Jumps, and Square-Integrable.
Let kn,∆n satisfy kn → ∞ and kn

√
∆n → 0, and let 0 < τ < ∞ be a deterministic time. Define

in = i− kn − 1. Let c1(∆n)1/4 < vn1 < c2
√
∆n for some constants c1, c2 and vn2 → 1. Then

σ̂2in (kn, τ−, p) :=
1

kn∆n

kn−1∑
m=0

vn2
∣∣∆n

inp
∣∣21{∣∣∆n

inp
∣∣ ≤ vn1 }

P→σ2(τ−).

One might think we could use an analogous strategy to estimate γ2(t), i.e., form an estimator of⟨
pJ
⟩
(t) by truncating away the small increments and take the time derivative of the resulting object.

In fact, Jacod and Protter (2012, 256) show that this estimator converges to zero in their proof of
the validity of their estimator for σ2(t). By considering a specific time τ , we implicitly condition on
τ . Doing this reduces the variation in the locations, and shrinking the window eliminates variation
from large jumps. If we also truncate away variation arising from the small jumps, we have no
variation left to identify the jump volatility with.

Over a fixed interval, the quadratic variation of jump processes and diffusive processes are of
the same asymptotic order as we shrink ∆n

in
, (Jacod, Podolskij, and Vetter 2010). If we consider

shrinking intervals, this is no longer the case. Instead, it is the absolute value of the stochastic
volatility variance-gamma and diffusion processes that have similar asymptotic properties. The
absolute value of a standard variance-gamma process, |L|(t), is a well-behaved object, just like the
absolute value of a Wiener process, |W |(t), and they vanish at the same asymptotic rate:

√
∆.13

Consequently, the lim∆→0

∣∣∆n
in
p(t)

∣∣ contains both γ2(τ) and σ2(τ).14

Proposition 1 (Estimating the Instantaneous Absolute Volatility). Let p(t) be an Itô semimartin-
gale with interval support satisfying Assumptions HL, Infinite-Activity Jumps, and Square-Integrable.
Let kn,∆n satisfy kn → ∞ and kn

√
∆n → 0, and let 0 < τ < ∞ be a deterministic time. Define

in := i− kn − 1.
Then the following holds, where erfcx := 2 exp(x2)√

π

∫∞
x exp(−s2) ds:15

1

kn
√
∆n

kn−1∑
m=0

|∆n
in+mp|

P→E|N (0, 1)|σ(τ−) +
γ(τ−)√

2
erfcx

(
σ(τ−)

γ(τ−)

)
.

As long as the volatilities are locally constant around τ , the implied parametric form gives a

13. Note, neither of the processes is a martingale. They are semimartingales.
14. It is worth noting that this estimator is for the instantaneous absolute value of the martingale part, it will not

pick up non-martingale parts of the jump process.
15. This function, erfcx, is the scaled complementary error function. It is a reparameterization of Mill’s ratio. Most

scientific programming suites provide efficient, numerically-stable implementations.
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limiting value for the absolute value as a function of σ2(τ) and γ2(τ). The expression on the right
of the equation in Theorem 6 is the mean of the convolution of |N

(
0, σ2(τ−)

)
| and |L

(
0, γ2(τ−)

)
|.

We combine this convolution and σ2(τ) to estimate γ2(τ). To do this, we must weight the
difference between the absolute population moment as a function of γ(τ) and the absolute sample
moment.

Theorem 6 (Estimating the Instantaneous Jump Volatility). Let p(t) be an Itô semimartingale
with interval support satisfying Assumptions HL, Infinite-Activity Jumps, and Square-Integrable.
Let kn,∆n satisfy kn → ∞ and kn

√
∆n → 0, and let 0 < τ < ∞ be a deterministic time. Define

in = i − kn − 1. Let σ̂n(τ−) converge in probability to σ(τ−). Let γ(τ) > 0 and g be strictly-
increasing, convex, and continuous, then the following holds:

γ̂(kn, τ−, p) := argmin
γ

g

∣∣∣∣∣∣ 1

kn
√
∆n

kn−1∑
m=0

∣∣∆n
in+mp

∣∣− E|N (0, 1)|σ̂n(τ−)−
γ erfcx

(
σ̂n(τ−)

γ

)
2

∣∣∣∣∣∣


P→ γ(τ−).

4.3. Implementation

We now have estimators for both the instantaneous and integrated volatilities. The difficult part is
estimating the instantaneous volatilities. The integrated volatilities are their averages. In practice,
two issues affect the analysis. First, we must remove market microstructure noise. To do this, I
adopt the pre-averaging approach argued for in Podolskij and Vetter (2009, Eqn. (3.9)).16 Define
the function: g(x) := (1 − (2x − 1)21{x >= 0}1{x <= 1}. The pre-averaged data is the rolling
average of the true data: p̄in := 1

κn

√∫ 1
0 g2(s) ds

∑κn−1
m=1 g(

m−1
κn

)∆n
in+mp. The g function corrects for

the error introduced by the pre-averaging.
If κn ∝ 1/

√
∆n, we likely achieve the optimal rate in the presence of noise, but the noise

leads to an asymptotic bias in most cases, (Jacod, Podolskij, and Vetter 2010). To avoid this, I set
κn = ⌊ θ

(∆n)0.55
⌋. This rate is useful because we can apply the estimators directly to the pre-averaged

data, and it is not obvious exactly what bias exists when estimating the instantaneous absolute
variation.17 I set θ = 0.5, which both is recommend by Hautsch and Podolskij (2013) and works
well in my simulations.

I apply Theorem 5 to estimate σ2(τ−). To do this, we must choose vn2 to converge to 1; I let
vn2 = 1. More importantly, I must choose the truncation threshold vn1 . We need vn1 to asymptoti-
cally upper bound the diffusion part. In the literature, papers usually set vn1 = cσ̃(τ−)∆0.49

n , where
σ̃(τ−) is a preliminary estimator for σ and c is a number of standard deviations chosen by the econo-
metrician. Since the tails of Laplace and Gaussian variables both decline rapidly, solving this decon-
volution problem is quite difficult, requiring a tight bound. The law of the iterated logarithm tightly
bounds the deviations of a Gaussian variable, and so I use vn1 =

√
2σ̃(τ−)

√
∆n

√
log(log(1/∆n)).

16. Proving my estimators are still consistent in the pre-averaging case is an interesting avenue for future research.
17. The transformation creating p̄in does not affect the volatilities but does affect the mean.
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The tails of the Laplace and Gaussian random variables both decline rapidly. The Gaussian
density’s tails are proportional to exp(−x2/2), while the Laplace density’s tails are proportional to
exp(−x/

√
2). Distinguishing these two is quite difficult in practice. Setting vn1 ∝ ∆.49, does not

work particularly well in this scenario as I show in Section 5. This bound, although valid, is not
particularly tight, and that matters when there are a lot of jumps.

To form a preliminary estimator, I start with the 1.25 times bipower variation and then iterate
until convergence. We must start by overestimating the volatility to avoid incorrectly setting
σ̂(τ−) = 0 because that truncates away all the increments. I choose kn, which controls the length
of the interval over which the volatilities are treated as approximately constant, to equal κ̄+(∆n)1/4

because that works well in simulations with market microstructure.
Now that we can estimate σ2(τ−), we need an estimator for the local absolute value. I plug the

pre-averaged data into Theorem 6. It is worth noting that the theory I develop is for the no-noise
case; the particular implementation likely is not affected by the noise, but I have not proven that.
An appealing avenue for future research would be extending these results to cover the noise case.

4.4. Integrated Volatilities

We want to estimate discrete increments of the volatilities. To do this, I average the instantaneous
estimators each day. The diffusion estimator defined this way coincides with standard diffusion
estimators in the literature up to edge effects.

Remark 2 (Consistency of the Integrated Estimators). Let p(t) be an Itô semimartingale with
interval support satisfying Assumptions HL, Infinite-Activity Jumps, and Square-Integrable. Let
kn,∆

n satisfy kn → ∞ and kn
√
∆n → 0. Define in = i− kn − 1. Then

σ̂2t :=
1

#tn ∈ [t− 1, t]

∑
t−1<tn≤t

σ̂2(kn, tn, p)
P→
∫ t

t−1
σ2(s) ds, (7)

and
γ̂2t :=

1

#tn ∈ [t− 1, t]

∑
t−1<tn≤t

γ̂2(kn, tn, p)
P→
∫ t

t−1
γ2(s) ds. (8)

Proof. The integrated estimators are averages of consistent estimators of σ2(t) and γ2(t). Averages
of consistent estimators are consistent by the law of iterated expectations, Jensen’s inequality
applied to the square, and Chebyshev’s theorem.

Implementing the discrete volatility estimators is straightforward; we can take daily averages
of the instantaneous volatilities. To estimate the realized density, plug the daily estimates into (5).
Since this function is uniformly continuous given a lower bound on the volatilities, the resulting
estimators should work well. Conversely, we cannot estimate the dynamics of the volatilities without
time-series variation.
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5. Simulations

One of my representation’s key advantages is that we can simulate from it easily whenever we can
simulate the instantaneous volatilities. Perhaps the most commonly used model for the diffusion
volatility is the Cox-Ingersoll-Ross (CIR) process, also known as the square-root process. (A diffu-
sion model whose volatility follows a CIR process is the Heston model.) It has the following form
dx(t) = κ(θ− (x(t))+ω

√
x(t) dW (t), where θ is the asymptotic mean, κ is the mean-reversion rate,

and ω is a scale parameter.
One nice feature of this model is that the volatility itself has volatility, but we only need to

simulate one process. The qualitative features of the jump and diffusion volatilities are quite similar
in practice, and so I adopt this model for the jump volatility.

5.1. Simulation Data Generating Process

I simulate a CIR process for both γ2(t) and σ2(t) using the full-truncation scheme of Lord, Koekkoek,
and Van Dijk (2010). The parameters are given in Table 1. I chose the specific parameter values
displayed below to match the discrete-time dynamics of the data.

Table 1: Volatility Parameters

θ κ ω Asymptotic Standard Deviation
σ2(t) 5.00× 10−5 1 2.10× 10−3 4.60× 10−4

γ2(t) 5.00× 10−5 1 2.10× 10−3 4.60× 10−4

Once I obtain σ2(t) and γ2(t), I plug them into dp(t) = σ(t) dW (t) + γ(t)√
2
dL(t). This gives me

a sequence of prices, which I use to estimate the volatilities.

5.2. Simulation Results

This section focuses on the daily volatility results as they form sufficient statistics for all of the
daily objects, which the applications study. This section also reports results for the truncation-based
estimator used by Li, Todorov, and Tauchen (2017), (LTT); the bipower estimator of Barndorff-
Nielsen and Shephard (2004) and Podolskij and Vetter (2009), (Bipower); and bipower estimators
computed on 5-minute data (5 Minute) to provide a point of comparison. In the jump case, these
estimators do not converge to γ2t but rather to the jumps’ quadratic variation. However, since γ2t is
the jumps’ predictable quadratic variation, these estimators should still be asymptotically unbiased
for γ2t .

I first estimate the model using the estimation procedure described in Section 4 without the
microstructure correction described there. I report averages over 250 days. It is worth noting that
the daily estimates are independent, i.e., I do not smooth across days.

The proposed estimators, however, perform quite well at this frequency outperforming the other
estimators by approximately an order of magnitude. Table 2 reports the average root mean square
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Table 2: Relative Simulation Error without Microstructure

Obs. per Min. E[(σ̂t−σt)
2]

E[σt]
E[(γ̂t−γt)

2]
E[γt]

BNS LTT 5 Min. Proposed BNS LTT 5 Min. Proposed
≈ 2 0.37 0.40 0.40 0.46 0.72 1.01 0.80 0.72
≈ 12 0.38 0.40 0.42 0.16 0.70 1.01 0.83 0.21
≈ 60 0.40 0.43 0.45 0.05 0.68 1.01 0.87 0.07
≈ 180 0.39 0.41 0.43 0.07 0.69 1.01 0.85 0.07

errors of 250 days worth of various estimators.

Appendix C shows that the results are robust. Table 7 reports a simulation with microstruc-
ture noise, which is adapted from Christensen, Oomen, and Podolskij (2014). The results are
similar. The previous methods perform better when estimating σ2t , but the proposed method still
substantially outperforms in estimating γ2t . I also simulate a process where we have Poisson jumps
and an average of one jump per day. Even though this dramatically violates the infinite-activity
assumption, the proposed method still works well (Table 8).

6. Data

The methods developed in this paper require high-frequency data. For the analysis to be interesting,
we need a dataset that faces a dense stream of relevant news. I chose SPY (SPDR S&P 500 ETF
Trust) which is an exchange-traded fund that mimics the S&P 500. I obtain it from the Trade and
Quotes (TAQ) database at Wharton Research Data Services (WRDS).

Since this paper only use one asset, and SPY is one of the most liquid assets traded, we can
essentially choose the frequency at which we want to observe the underlying price. In order to
balance market-microstructure noise, computational cost, and efficiency of the resulting estimators,
I sample at the 1-second frequency. The data used starts in 2003 and ends in September 2017.
Since the asset is only traded during business hours, this leads to 3713 days of data with an average
of ≈ 24 000 observations per day. The dataset takes up about 4.4GiB of memory. It is also worth
noting that SPY is by far the most liquid exchange-traded fund, especially in recent years, reducing
the effect of market microstructure, such as bid-ask spreads, bounces, and rounding error.

7. Volatility: Empirics

I separate this empirical part into two subsections. The first section characterizes the static prop-
erties of the volatilities, and the second characterizes their dynamic properties. In particular, it
shows that both volatilities are highly persistent, displaying long-memory.
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7.1. Statics

The results concerning σ2t are broadly consistent with previous work on the topic. Since this
paper introduces γ2t , the stylized facts regarding its features are new. Thankfully, in practice, the
volatilities have very similar dynamics, and so much of the intuition regarding σ2t can be directly
translated to γ2t .

As can be seen in Figure 1a, the volatilities are very closely related; their correlation equals 0.93.
They both significantly increase during crises. Interestingly, σ2t spiked more than γ2t did during the
Financial Crisis and seems to spike more during other recessions as well.

Figure 1: Volatilities
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Figure 1b plots the two marginal log-volatility distributions along with their joint distribution.
As can be seen from the graph, both marginal distributions are skewed right.18 This skewness
implies that the volatilities are more likely to take on abnormally large values than take on abnor-
mally small ones. This fact is particularly noteworthy as these are distributions of log-volatilities,
and taking the logarithm already removes a large amount of the skewness.

Andersen et al. (2001) argue that realized volatilities are approximately log-Gaussian. One
might expect this to continue to hold in this case. The black lines in Figure 1b are Gaussian
densities fit to the data for comparison purposes. At a qualitative level, the log-volatilities are
roughly log-Gaussian. They are slightly skewed and slightly kurtotic, even after taking logs, which
we can also see in Table 3.

Table 3: Volatility Summary Statistics

σ2t γ2t
γ2
t

σ2
t+γ2

t
log(σ2t ) log(γ2t ) log

(
σ2t + γ2t

)
log
(

γ2
t

σ2
t+γ2

t

)
Mean 4.47×10−5 3.68×10−5 0.56 −10.91 −10.64 −13.15 −2.17
Std. Dev. 1.52×10−4 9.12×10−5 0.12 1.13 0.98 1.03 0.22
Skew. 15.65 11.81 −0.18 0.71 0.55 0.72 −0.95
Kurt. 376.55 250.23 2.92 4.12 3.81 4.10 4.88

18. The only reason that the diffusion density might appear to be skewed left is that it is plotted sideways.
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We are interested not just in the volatilities’ univariate dynamics, but also in their interrela-
tionships. We know from Figure 1b that the volatilities move together. To investigate this further,
Table 4 reports the correlations between the various volatility measures and daily excess returns.

Table 4: Volatility Correlations

σ2t γ2t σ2t + γ2t
γ2
t

σ2
t+γ2

t
rxt

σ2t 1.00 0.74 0.96 −0.29 −0.11
γ2t 0.74 1.00 0.89 −0.10 −0.13

σ2t + γ2t 0.96 0.89 1.00 −0.23 −0.13
γ2
t

σ2
t+γ2

t

−0.11 −0.13 −0.13 1.00 0.12

Table 4 replicates standard results regarding the relationship between volatility and returns.
We also see that jump and diffusion volatility and highly positively correlated.

7.2. Dynamics

This section studies the dynamics of log-volatilities because they are closer to Gaussian, and so the
true conditional expectations are likely closer to approximately linear. Table 5 reports independent
AR(1) regressions for each volatility and a joint V AR(1) regression to gain some high-level under-
standing of the dynamics. Both series are quite persistent and predictable. However, we still have
economically significant innovations.19

Table 5: Autoregressive Models

Intercept log(σ2t−1) log(γ2t−1)
Innovation
Variance R2

AR(1)
log(σ2t ) −1.63 0.85 0.31 72%

(−1.82, −1.45) (0.83, 0.87)
log(γ2t ) −1.78 0.83 0.25 69%

(−1.97, −1.59) (0.82, 0.85)
VAR(1)

log(σ2t ) −0.84 0.56 0.38 0.33
(−1.04, −0.64) (0.52, 0.59) (0.33, 0.42)

log(γ2t ) −1.80 0.34 0.48 0.27 72%
(−1.98, −1.62) (0.31, 0.38) (0.44, 0.52)

19. This section’s results come with the significant caveat that I am using estimated regressors and do not correct
for this in my statistical results. For the most part, the evidence is so overwhelming the conclusions should not be
affected, but, in some of the more borderline cases, it may be an issue.
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7.3. Realized Density Evaluation

Section 5 showed that the estimators work well in simulations. It would be useful to know if they
worked well in the data as well. Besides, perhaps the assumptions justifying the integrated-Laplace
representation do not hold in practice. Thankfully, Theorem 4 is a valid conditional density, and
we can consistently estimate the conditioning variables. Consequently, techniques developed to
analyze conditional densities work well here.

Figure 2: Realized Density Evaluation
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Each day, I take the σ̂2t and γ̂2t and compute R̂Dt. I can draw from R̂Dt easily, and so I
compute the probability integral transform (PIT) of the demeaned daily return using simulation.
This procedure jointly evaluates the density representation, the time-aggregation procedure, and
the estimation of the parameters.

As can be seen in Figure 2, the PIT is close to uniform. The only deviation is in the far right tail.
I did not correct for the skewness in the data when I computed RDt, i.e., the volatility and returns
are not independent at the daily level. We can see this in the graph. However, the deviation is not
large, and for most risk-measures, we are far more concerned about the left-tail. This procedure
estimates that tail almost perfectly. It is also worth noting that I needed to assume this symmetry
in the discrete-time representation, but not the continuous-time one. The deviations here do not
invalidate that representation at all. Furthermore, Figure 2b shows the deviations are most perfectly
uncorrelated across time. This lack of correlation implies that the densities’ dynamics are estimated
quite well.

8. News Premia: Empirics

8.1. News Premia

In practice, σ2t and γ2t are very heavily correlated (74%) and so regressing on them does not lead
to robust results. Moreover, interaction terms in those regressions are often significant. To isolate
the effect of the jumps, I reparameterize the process in terms of γ2

t

σ2
t+γ2

t
and σ2t + γ2t . To make

the innovations closer to Gaussian-distributed and avoid the need for interaction terms, I report
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elasticities, i.e., I apply a log transformation. Hence, the preferred specification is

rxt = β0 + β1 log
(
σ2t + γ2t

)
+ β2 log

(
γ2t

σ2t + γ2t

)
+ ϵt. (9)

I report the OLS and robustness results in Appendix E. The identified results in the other specifi-
cations either agree with the main specification or are insignificant. The OLS results are consistent
with the literature.

The analysis below uses the daily excess return, rxt, to make the results more easily comparable
with those in the literature. I construct rxt by taking rt and subtracting the log yield on the 10
year treasury bill, which I obtain from FRED. I annualize rxt (multiplied it by 252) to make the
results more interpretable. I use Newey-West heteroskedasticity and autocorrelation (HAC) robust
standard errors and report t-statistics in square brackets. I use Bartlett’s kernel with the optimal
bandwidth, per Newey and West (1994).

Risk premia are forward-looking by definition, and so we must isolate the predictable variation
in the regressors. Intuitively, we want to regress returns on expected volatilities. If we interpret
coefficients from a contemporaneous regression, like those reported in Table 12 (which is in the
appendix), as risk premia, we have the classic endogenous regressors problem because the leverage
effect is the correlation between the regressors and error terms.

The most common way to handle endogenous regressors is using instrumental variables, which
is what I do. In particular, I use the lagged regressors as instruments. The lagged volatilities are
valid instruments. First, they explain a large amount of the variation in the regressors. I adopt an
approximate heterogeneous autoregressive (HAR) specification to choose lags used as instruments,
(Corsi 2009). To be precise, I use σ2t−l + γ2t−l and

γ2
t−l

σ2
t−l+γ2

t−l
for l ∈ {1, 2, 5, 25}. I report the results

from the first-stage regressions in Table 16. The F -statics reported there are far outside the week-
instrument region. Second, they are predetermined, and hence by definition independent of the
date-t innovation.

I consider two specifications. The leading specification uses log(σ2t + γ2t ) as my first regressor
and log( γ2

t

σ2
t+γ2

t
) as my second regressor. I also consider a specification with log(σ2t ) as the first

regressor and log(σ2t + γ2t ) as the second regressor.
The results are highly statistically significant. Contrary to much of the previous literature, I

find returns are highly predictable at the daily level. As theory predicts, I find that the predictable
parts of log(σ2t + γ2t ), log(σ2t ), and log(γ2t ) have strong positive relationships with returns in uni-
variate regression. Conversely, when we run a bivariate regression the coefficient associated with
jumps changes sign. Table 11 shows that log(σ2t ) and log(γ2t ) are highly positively correlated. Con-
sequently, it should not be surprising that log(γ2t ) has different signs in the univariate and bivariate
regressions. The regression on the jump proportion has similar results because it also adjusts for
movements in σ2t + γ2t .

We want to interpret the magnitude of the coefficients, not just the sign. Since I regress
annualized excess log-return on the log(σ2t + γ2t ) and log( γ2

t

σ2
t+γ2

t
), the estimates are elasticities.
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Table 6: News Premia Estimates

Regressors Specifications

Intercept 2.95 −2.45 −5.04 3.27 2.95 2.32
[6.61] [−5.12] [−0.58] [7.25] [6.07] [4.15]
0.24 0.14log

(
σ2t + γ2t

)
[6.61] [2.68]

log
(

γ2
t

σ2
t+γ2

t

) −5.01 −4.15
[−5.86] [−4.93]

0.25 1.86log(σ2t ) [6.53] [5.18]

log
(
γ2t
) 0.23 −1.74

[5.40] [−4.53]

These elasticities are highly statistically and economically significant. Consider the first column.
The elasticity of rxt with respect to σ2t + γ2t equals 0.24. In other words, a 1% increase in σ2t + γ2t

for an entire year increases the expected yearly return by 0.24%.20 For comparison, the average
year-to-year difference in average σ2t +γ2t in my sample is ≈ 50%. It increased by ≈ 150% between
2007 and 2008.

The average annual absolute difference in γ2
t

σ2
t+γ2

t
is lower, equaling 6.13%, but the regression

coefficient is substantially larger. A 1% change in γ2
t

σ2
t+γ2

t
for an entire year changes expected returns

by −5.01%. In both cases, the implied movements in risk premia from year to year are substantial.
I am not the first researcher to find movements in risk premia that are this large. Martin (2017)
reports changes of similar magnitude.

As we would expect, when risk as measured by σ2t , γ2t , or σ2t + γ2t increases, expected returns
increase. Surprisingly, once we control for σ2t the jump (news) premium is negative. It is always
smaller than the diffusion volatility premium. This stylized fact is rather difficult to explain using
standard finance models for two reasons. First, it means that two risk factors move at the daily
frequency or faster. Second, it means that the shocks that are large relative to the amount of
time over which they occur command a smaller premium than shocks which are small relative
to the amount of time over which they occur. I am not the first person to find counter-intuitive
relationships between risk premia and the size of shocks. See, for example, Dew-Becker, Giglio, and
Kelly (2019). I also consider several other specification and setups to this problem in the appendix.
The results either agree or are statically insignificant.

9. Conclusion

This paper investigates how jumps affect investors’ risk. When a news shock causes the representa-
tive investor’s information set to jump, she reprices the assets. I introduce jump volatility — γ2t —

20. The reason that I only considered a 1 % change is that the approximation of log-differences as percent differences
only holds for small changes.
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which is a sufficient statistic for the jump part of price dynamics. I introduce the realized density,
RDt, to reduce tracking the returns’ predictive density — h(rt | Ft−1) — to volatility forecasting.
I do this by representing infinite-activity jump processes as stochastic volatility variance-gamma
processes. I develop estimators for the instantaneous and integrated jump and diffusion volatilities,
thereby nonparametrically identifying instantaneous jump dynamics.

These volatility estimators outperform those in the literature when the data have lots of jumps.
I apply these estimators to the S&P 500 using high-frequency data from SPY. I show that the jump
volatility is relatively well-behaved and is roughly log-Gaussian and that γ2t has long-memory and
co-moves a great deal with σ2t .

I next analyze how jumps affect expected returns. I show that σ2t commands a positive daily risk
premium as the theory predicts. I then show that γ2

t

σ2
t+γ2

t
commands an economically and statistically

significant negative premium. The magnitude of this premium implies there are substantial benefits
to adding jumps to our models relative to just using volatility. This magnitude also poses interesting
questions for finance theory. In particular, the data require at least two risk factors to explain daily
risk premia dynamics in the S&P 500.
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Appendix A Representation Theorems

A.1 Theorem 1 Square-Integrable Semimartingales as Integrals

Proof. We can replace the jump part of the Grigelionis representation with an integral with respect
to the standard-variance gamma process where the root jump volatility is the integrator using
Corollary 2.1.

A.2 Remark 1 Jump Volatility and Predictable Quadratic Variation

Proof. The jumps are integrals with respect to Poisson random measures and the jumps are un-
predictable, and so [p]J(t) =

∑
s≤t∆p(s)

2 =
∫ t
0

∫
X δ2(s, x)n(ds, dx). This implies that ⟨p⟩J(t) =

E[[p]j(t) | Ft−] = E[
∫ t
0

∫
X δ2(s, x)n(ds, dx) | Ft−] =

∫ t
0

∫
X δ2(s, x)ν(ds, dx), where the last inequality

holds by the definition of locally-square integrable.
We also must show that the limit of the expectation approaches γ2(t):

lim
∆→0

1

∆
E
[∣∣pJ(t+∆)− pJ(t)

∣∣2 ∣∣∣Ft−

]
= lim

∆→0

1

∆
E

[∣∣∣∣∫ t+∆

t
δ(s, x)(n− ν)(ds dx)

∣∣∣∣2
∣∣∣∣∣Ft−

]
. (10)

By the Itô Isometry, we can rewrite (10) as: lim∆→0
1
∆E[

∫ t+∆
t δ2(s, x)n(ds dx) | Ft−]. Define γ2(t) :=∫

X δ2(t, x)ν(dx). Choosing δ so that dx, ds are independent and ν is proportional to the Lebesgue
measure, we have lim∆→0

1
∆E[

∫ t+∆
t

∫
X δ2(s, x)(ds, dx) | Ft−] = lim∆→0

1
∆E[∆γ2(t) +

∫ t+∆
t (γ2(t) −

γ2(s)) ds | Ft−]. We can split this into the value of the jump volatility at t and deviations from it:
= lim∆→0 γ

2(t)+ 1
∆∆O(E[supt≤s≤t+∆

∣∣γ2(t)− γ2(s)
∣∣ | Ft−]) = γ2(t), where the last inequality holds

by the Davis-Burkholder-Gundy inequality.

A.3 Converting Poisson Processes to Continuous Martingales

Lemma 7. Converting Poisson Processes to Continuous Martingales
Let Y (t) be a compound Poisson process with compensator ν(t). Define N(t) :=

∑
s≤t 1{Y (t) ̸=

Y (t−)}. Let ν∗(t) := ν(N(t)). Define ρ(t) := min{τ |∆N(τ) = 1, τ > t}. Define the expanded
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filtration
Fρ
t := ∪ϵ>0FY

t−ϵ ∩ σ ({ρ < t}) .21 (11)

Then Y ∗(t) := Y (t)− ν∗(t) is a martingale in FY
t , and there exists a continuous martingale in Fρ

t

that equals Z(t) := Y ∗(N−1(t)) in probability.

Proof. We can assume that ν has Lebesgue base Lévy measure without loss of generality; otherwise,
we just rescale appropriately. We have that Y ∗ is a martingale in Ft because all that time-changing
ν is doing is making the compensator be a jump process with the same jump times as Y (t), ρ(t),
with jump magnitudes ∆ν(ρ) = ν(1)− ν(0).

Since N(t) is a deterministic process in Fρ
t and we are expanding by an honest time, Y ∗(t) is

still a semimartingale, (Barlow 1978). Hence, we only need to show that the martingale property
holds. Consider E [Z(1) | Fρ

τ ]. Time-changing Y (t) by N−1(t) turns 1 into ρ because there is 1 jump
whose time satisfies t ≤ ρ. That is, we pick up the one jump in Y which occurs at ρ. Meanwhile,
ν∗(N−1(1)) = ν(1): E[∆Y (ρ)− (ν(1)− ν(0)) | Fρ

τ ] = 0 =⇒ E[Z(t)− Z(t− 1) | Ft−1] = 0 for all t.
Consider τ < 1, then the change in N(t) equals zero, and so the increment has mean zero. If

we consider τ > 1, we can combine these two arguments. Consequently, Z(t) is a martingale in the
Fρ
t filtration.
Now, Fρ and Fρ

t− coincide by (11), which implies that Fρ
t is generated by the predictable σ-

algebra or, equivalently, the continuous processes. As a result, for any process adapted to this
filtration, there exists a continuous martingale that equals it in probability.

A.4 Theorem 2 Time-Changing Jump Martingales

Proof. Let Y (t) := pJ(t). Fix a stochastic basis (Ω,F , (Ft)t≥0,P)), where the space is a very good
filtered extension such that Y (t) = H ⋆ (n−ν), and n is a Poisson random measure with associated
compensator ν. This compensator has associated Lebesgue base Lévy measure λ. (Since H must
be left-continuous for this process to be well-defined, we can assume without loss of generality that
H is predictable.) This H is a two-dimensional process that controls all of the dynamics of Y (t).

To prove this result, first, I switch the base Lévy measure to one that has this property. Second,
I time-change the process in each strip to handle the dynamics. Third, I switch from an integral
with respect to infinitely-many Poisson processes to one with respect to a single Laplace process
by appropriately combining the Poisson processes.

The process Y (t) jumps only finitely-many times in any A ⊂ R, with 0 ̸∈ A. Let A ⊂ R{0}c be
an open interval. Define ñ such that ñ([0, t]×A) = 1

x exp(−x)1A ⋆ n, with associated compensator
ν̃. This implies the base Lévy measure equals 1/x exp(−x). This measure is absolutely-continuous
to n for any A because it is a compensated compound Poisson processes without atoms. Jumps of
size zero, on the other hand, do not affect Y (t)’s paths. Hence, we can represent Y (t) as an integral
with respect to ñ− ν̃, (Medvegyev 2007, Example 5.51).

21. Note, we expanding FA
t− not FA

t .
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The benefit of switching the base Lévy measure is that it implies the associated predictable inte-
grator, H̃, is Op(1/x exp(−x)). For a stopping time τ , by the Davis-Burkholder-Gundy inequality:
C1E [[Y 1A](τ)] ≤ E [|(Y 1A)(τ)|] ≤ C2E[[Y 1A](τ)]. The middle term is just expectation of the abso-
lute value of a Poisson random variable. Hence, ∞ >

∫
A H̃(s) dλ̃(s) =⇒ ∞ >

∫
A

H̃(s)
s exp(−s) ds.

Since A has arbitrary finite measure, the integrand must be Op(1). Note, we have only bounded it
from above, H̃(s) may equal zero. However, since we assumed H(x) has interval support, we can
assume it is bounded from below over any A in the support.22

Define Y A(t) := Y (t)1{Y (t) ∈ A} −
∫ t
0

∫
A H̃(x, s) dλ̃(x) ds. This process is a martingale with

respect to Ft. To see this note, first Y (t)1{Y (t) ∈ A} = 1{Y (t) ∈ A} ⋆ n; second, 1{Y (t) ∈
A}⋆ν =

∫ t
0

∫
A H̃(x, s) dλ̃(x) ds by the definition of base Lévy measure; and, third, ν is the predicable

compensator of n. Consequently, increments of Y A(t) are a martingale difference sequence, and so
Y A(t) is a martingale with respect to the filtration it generates — FA

t .
I now use a time-change argument to convert Y A(t) to a continuous martingale in an expanded

filtration. Doing this will let me use the Dambis-Dubins-Schwarz theorem on a continuous martin-
gale. Define the expanded filtration Fρ

t := ∪ϵ>0FA
t−ϵ ∩ σ ({ρ < t}) and NA(t) :=

∑
s≤t 1{Y A(t) ̸=

Y A(t−)}. Define ν∗ = ν̃(N(t)) and ZA(t) := (Y A − ν∗)(N−1(t)).
By Lemma 7, we can assume without loss of generality that ZA(t) is a martingale in FA

t and a
continuous martingale in Fρ

t . By the Dambis, Dubins & Schwarz theorem, a continuous martingale
is a Wiener process when time-changed by its quadratic variation. Therefore, ZA(t)

a.s.
= W(⟨ZA⟩(t)),

where W is the standard Wiener process.
There are two main limitations to this result. First, we want an expression for Y , not just for

each of the ZA. Second, Fρ
t is not the filtration generated by the data, and so we must consider

what this representation implies about the process in that filtration.
To resolve the first problem, we must aggregate the strips. Consider aggregating all of the

NA(t). From the definition of ν̃, aggregating the NA(t) creates a Poisson random measure with
intensity measure ν̃(x) = x−1 exp(−x)dx. This is just the intensity measure of a gamma process.

For a countable partition of Z(t)’s support, A1, A2 . . ., Z =
∑

Ai
ZAi . Furthermore, Wiener

processes are stable under countable sums as long as the variance remains finite, which it does in
this context because the initial process is locally-square integrable. Because the Poisson processes
in the different A are conditionally independent, the Weiner processes are as well. Consequently,
we can drop the A superscript in the previous argument, and ⟨Z⟩ =

∑
Ai
⟨ZA

i ⟩.
Since we are conditioning on additional variation over any interval I,

⟨Y | FY
t ⟩ ≤ ⟨Z | FY

t ⟩ ≤ ⟨Y | FY
t , at least one jump in I⟩ = ⟨Y | FY

t ⟩, (12)

where the last equality follows because we are conditioning on a probability one event by the
infinitely-activity assumption. Because intervals generate the Borel σ-algebra over R+, this implies
that ⟨Y ⟩ = ⟨Z⟩. Then since ⟨Y ⟩ is measurable with respect to Ft and the jumps in N(t) are totally

22. Any A with H(x) = 0, for x ∈ A has E[1{Y (t) ∈ A}] = 0.
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inaccessible this implies that ⟨Z⟩ and N(t) are independent.
This implies that

(Y − ν∗)(N−1(t))
L
= Z(t)

L
= W(⟨Z⟩(t)) =⇒ (Y − ν∗)(t)

L
= W(⟨Z⟩(N(t)))

L
= W(N(⟨Z⟩(t))), (13)

where the last inequality follows by noting we can interchange two different time-changes if they
are independent and at least one of them is a Lévy process. We can combine W and N , and get a
Laplace process: (Y − ν∗)(t)

L
= L(⟨Z⟩)(t).

All we have left to show is that Y −ν∗ and Y − ν̃ induce the same distributions. It is sufficient to
show that ν̃ and ν∗ induce the same distributions over short-intervals because that implies that they
act the same as integrators for predictable processes (which are automatically independent of N(t)).
All that the time-change does is convert ν̃ into a step function with the steps at the jumps of N(t).
Consider an interval I of length ξ. Now, |N(ξ)− ξ| declines exponentially as the tails of a gamma
random variable does. In addition, because N(t) is infinite-active the jump locations form a dense
subset of R+. Since ν̃ is an finite-variation predictable process, it is a semimartingale. Consequently,
the Davis-Burkholder-Gundy applies, and so the maximal deviation of a p-polynomial is less than
ξp. Consequently, the maximal deviation is bounded above by Cξξp|N(ξ)−ξ| where C is a constant.
This is proportional to ξp+1 · exp(−ξ)polynomial(ξ) → 0 as ξ → 0. This holds for any p, and the
polynomials are sufficient to generate the Borel σ-algebra.

A.5 Theorem 2 Time-Changing Finite-Activity Jump Martingales

Proof. Let Y (t) := pJ(t) be a finite-activity jump martingale (a compensated compound Poisson
process). Fix a stochastic basis (Ω,F ,Ft,P). Note, we can assume without loss of generality that
there exists a δ(s, x) so that the base Lévy measure λ is independent of time (dt). Define the
expanded filtration Fρ

t := ∪ϵ>0FY
t−ϵ ∩ σ ({ρ < t}) and N(t) :=

∑
s≤t 1{Y (t) ̸= Y (t−)}.

Define Z(t) := Y (N−1(t)). As in the proof of Lemma 7, if E[Z(t) | Fρ
t ] = Z(t) there exists

a continuous martingale in Fρ
t that equals Z(t) in probability. Consider E[Z(1) − Z(0) | Fρ

t ] =

E[∆Y (ρ) | Fρ
t ] = 0 because it is just the expected jump magnitude, which is zero by assumption.

For some τ < 1, N(t) is constant, and so the difference is zero. For τ > 1, we can combine these
arguments. By the Dambis, Dubins, and Schwarz theorem, Z(t) a.s.

= W(⟨Z⟩), where we extend the
space as necessary. We have a sequence of two time-changes: N(t) and ⟨Z⟩(t).

The question is what is the relationship between ⟨Z | Fρ
t ⟩ and ⟨Y ⟩. Unlike in the proof of

Theorem 2, we cannot assume that they are independent. For an interval I, we must keep track
of the probability of no jump, this event is not independent of the number of jumps, and so we
cannot interchange filtrations like we do in that proof. Note, Z(t) and Y (t) have the same jump
magnitudes. Consider an interval I, by subdividing I as necessary we can assume without loss
of generality that I has at most one jump. If I, has zero jumps, both N(t) and Y (t) have zero
variation, and so ⟨Z | Fρ

t ⟩ and ⟨Y | Fρ
t ⟩ equal zero. Conversely, if I contains one jump, then both

equal E[(∆Y )2 | FY
t−, ρ]. Hence, the ⟨Z | Fρ

t ⟩ = ⟨Y | Fρ
t ⟩. Since ρ and FY

t− jointly generate Fρ
t and
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⟨Y | ρ⟩ = ⟨Y | Fρ
t ⟩, we have a compound Poisson mixture of time-changed Weiner processes. That

is

Y (t) =

W (⟨Y | ρ⟩(t)) with intensity ν

δ0(t) with intensity 1− ν.
(14)

A.6 Theorem 1 Jump Processes as Integrals

Proof. Since Y (t) is an Itô semimartingale, Y (t) =
∫ t
0

∫
R δ(s, x)(ds, dx). This implies that its

predicable quadratic variation, K(t), equals
∫ t
0

∫
R δ

2(s, x)(dx, ds) with time-derivative k(t) equal to∫
R δ

2(s, x) dx.
Let J(t) be the purely-discontinuous martingale part of Y (t), then Theorem 2 implies that

J(⟨Y ⟩−1)(t)
L
= L(t), or equivalently, J(t) L

=
∫ ⟨Y ⟩−1(t)
0 dL(s). Then since k√

2
L(1) = L(k2), where

L(1) is a standard Laplace random variable, and k(t) is a predicable process (and so independent
of L), J(t) =

∫ t
0 k(s) dL(s).

A.7 Theorem 4 Realized Density Representation

Proof. Consider the diffusion part of the process:

h
(
pD(t)− pD(t− 1)

∣∣Ft−1

)
= h

 ∑
n∈ 1

∆
,...,0

∫ t−(n+1)∆

t−n∆
σ(s) dW (s)

∣∣∣∣∣∣∣Ft

 . (15)

If ∆ is small enough, we can pull σ2(t) out of the integral because requiring the integrand to be
predictable does not affect the value of the process. This equals

h

 lim
∆→0

∑
n∈1, 1

∆

σ(t− n∆)

∫ t−(n+1)∆

t−n∆
dW (s)

∣∣∣∣∣∣∣Ft−1

 . (16)

Since the martingale components of σ2(t) are independent of W , we can condition on the entire
path of σ2(t) without affecting the distribution of the increments of W :

h

(√∫ t

t−1
σ2(s) ds

∫ t

t−1
dW (s)

∣∣∣∣∣Ft−1

)
L
=

∫
σ2
t

N

(
0,

∫ t+∆

t
σ2(s) ds

)
dG
(
σ2t
∣∣Ft−1

)
(17)

The argument for the jump volatility follows, mutatis mutandis. The only real difference is that
the scale (the expectation of the absolute deviation) of the Laplace distribution equals

√
2 times

the standard deviation.
You can just carry the drift through the analysis and then add it back at the end. To combine
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the jump and diffusion realized densities, note that the density of independent variables is the
convolution of the densities. The integrators are pure-jump and diffusive martingales, and so they
are orthogonal. Consequently, the jump and diffuse parts are independent conditional on the drift
and the volatilities. Also, I derived RDt in the argument above; it is merely the function inside the
integral.

Appendix B Volatility Estimation

B.1 Assumption HL implies Assumption SHL

Similar to Jacod and Protter (2012), I prove the global convergence by proving local convergence.
I do this by slightly modifying Jacod and Protter’s (2012) Assumption SH in the same way that I
modified their Assumption H in Section 4.1. I also slightly modify the literature’s Assumption SH.
Let ω index the underlying probability space Ω.

Assumption SHL. We have Assumption HL and there is a constant K such that the following
hold for all t and all ω:

∥b(t, ω)∥ < K, ∥σ(t, ω)∥ < K, ∥γ(t, ω)∥ < K.

These two assumptions are closely related. Assumption HL is the local version of Assumption
SHL. Assumption HL only restricts the local behavior of the function, while Assumption SHL
make the equivalent conditions globally. Since convergence in the Skorokhod topology only depends
upon local behavior, convergence under Assumption SHL implies convergence under Assumption
HL. The arrow with L-s above it denotes stable convergence in law.

Lemma 8 (HL implies SHL). If an Itô semimartingale p(t)n
L-s−→ p(t) under Assumption SHL,

then p(t)n
L-s−→ p(t) under Assumption HL, and the equivalent statement holds for convergence in

probability.

Proof. Let Un(p)(t) and U(p)(t) refer to two processes that are defined in terms of p(t). In the
first step, I define a process in terms of p(t) that satisfies Assumptions SHL and Infinite-Activity
Jumps and characterize its relationship to p(t). In the second step, I show that if that p(t) satisfies
Assumptions HL and Infinite-Activity Jumps, then Un(p)(t)

L-s−→U(p)(t) under Assumption SHL
implies Un(p)(t)

L-s−→U(p)(t) under Assumption HL. I then show that Assumption Infinite-Activity
Jumps is unnecessary, and similar statements hold for convergence in probability and convergence
of stopped processes.

Step 1

We can assume without loss of generality that µ(0) = 0, and so there is a localizing sequence τj
such that ∥µ(t)∥ ≤ j if 0 ≤ t ≤ τj . Define the stopping times Rj = inf (t : ∥p(t)∥+ ∥σ(t)∥ ≥ ξ) and
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the stopping times Qj = inf (t : ∥p(t)∥+ ∥γ(t)∥ ≥ ξ). These increase to ∞ as well. Therefore, we
can set Sj = τj ∧Rj ∧Qj .

Define the following processes:

µ(j)(t) = µ(t ∧ Sj), σ(j)(t) = σ(t ∧ Sj), γ(j)(t) = γ(t ∧ Sj) (18)

and

p(j)(t) =

0 if Sj = 0

p(0) +
∫ t
0 µ

(j)(s) ds+
∫ t
0 σ

(j)(s) dW (s) +
∫ t
0 γ

(j) dL(s) if Sj > 0.
(19)

The local characteristics of p(j)(t) and p(t) agree when t < Sj because they are defined to be
the same. If Sj = 0, then ∥p(t)∥ = 0, and so we are equal there as well. Furthermore, if we use
the same driving measures W (t) and L(t) to represent both processes, the equality is not just in
distribution, but ω by ω, where the original processes are defined relative to an event space Ω. In
addition, p(j)(t) satisfies Assumption SHL, since ∥p(j)(t)∥ ≤ 3ξ.

Step 2

By the proof of Lemma 4.4.9 in Jacod and Protter (2012), the above statement is sufficient to show
that the estimators defined above imply convergence stably-in-law. Then this holds for any process,
and so it holds for the stopped versions above. Convergence stably-in-law implies convergence in
probability if the two processes are defined on the same probability space, which we do not change
above. So if the initial result implies convergence in probability, the new one does as well.

If p(t) does not satisfy Assumption Infinite-Activity Jumps, then it is locally a convolution of a
Laplacian mixture and the zero process by Theorem 3. Replacing part of the sample path with 0

does not violate any boundedness conditions. Therefore, we can replace p(j)(t) with the 0 process
when necessary, and so the result even holds if Assumption Infinite-Activity Jumps does not hold.

B.2 Proposition 1 Instantaneous Absolute Volatility

Proof. I start this proof by deriving the mean of the absolute volatility under an assumption that
σ(t) and γ(t) are locally constant. I then show that the estimator in that situation converges to its
mean. I then relax the assumption of locally-constant volatility.

Step 1

In this section, I start by applying Itô’s Formula for convex functions to |p|(t) to separate its
variation into its jump and continuous components. Recall the left-derivative of the absolute value
function is f ′− = sign(x). Using Medvegyev (2007, Theorem 6.65), where A(t) is a finite-valued
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increasing process, we can rewrite |p(t)| as

|p(t)| =
∫ t

0
sign(p(s−)) dp(s) +A(t) =

∫ t

0
sign(p(s−)) dW (s) +

∫ t

0
sign(p(s−)) dL(s) +A(t). (20)

This A(t) can be absorbed into the drift term of p(t) and vanishes as ∆ → 0.
If the Laplace part and the diffusion parts have the same sign, |p|(t) − A(t) is the sum of the

absolute values of the two processes. Since the innovation processes are independent and symmetric,
this occurs one-half of the time. If they have different signs, the situation is more complicated. In
that case, sign(p(s−)) is the same as the sign of the larger, in magnitude, of the two processes. Let
ΩL denote the set where the Laplace part has a larger magnitude and ΩW denote the part where
the diffusion part does. Then

|p(t)| −A(t) | the signs differ (21)

=

∫ t

0
sign(W (s−))1ΩW (s−)σ(s) dW (s)−

∫ t

0
sign(L(s−))1ΩW (s−)γ(s) dL(s)

+

∫ t

0
sign(L(s−))1ΩL(s−)γ(s) dL(s)−

∫ t

0
sign(W (s−))1ΩL(s−)σ(s) dW (s).

Let ∆ be the length of an interval over which γ(t) and σ(t) are constant, and let |ψ| and |ϕ|
denote the densities of the absolute values of a Laplace and Gaussian variables, respectively. Then
we can rewrite an increment of (21) as follows conditional on the signs differing as follows:∫ ∞

0

∫ ∞

x
(y − x)ψγ,∆(x)|ϕ|σ,∆(y) dx dy +

∫ ∞

0

∫ ∞

y
(x− y)ψγ,∆(x)|ϕ|σ,∆ dy dx. (22)

Plugging in the parametric forms of ψ and ϕ gives:23

√
∆√
2

(
−γ +

2√
π
σ + γ erfcx

(
σ

γ

))
+
γ
√
∆√
2

erfcx
(
σ

γ

)√
∆

(
m1σ +

γ√
2

(
2 erfcx

(
σ

γ

)
− 1

))
. (23)

When both parts have have the same sign, the absolute value is just the sum of the absolute
values and so we can rewrite (21) given that the signs equal as m1σ

√
∆ + γ√

2

√
∆. By taking the

average of this and (23), we can solve for (21):

E|p(t)| −A(t) = m1σ
√
∆+

γ
√
∆√
2

erfcx
(
σ

γ

)
. (24)

Step 3

This section considers the asymptotic behavior of the estimator. It proves convergence in mean-
square, which implies convergence in probability. Let Ωn be the set where the two increments have
the same sign and let λn be its accompanying Lebesgue measure.

23. A standard computer algebra system can be used to perform the requisite integration.
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Assume that σ(t) and γ(t) are step functions, there exists a sequence {τj} such that σ(t) and
γ(t) are constant in (τj , τj+1). Hence,

p(t) =
∑
j

∫ τj+1

τj

σ (τj) dW (s) +

∫ τj+1

τj

γ (τj) dL(s) (25)

Consider the squared norm of the difference between the estimator and its expectation. It is
worth noting that as kn gets large, we are averaging over times earlier and earlier with respect to τ ,
which is why the bottom part of the integral is growing with kn, not the top part. We can assume
without loss of generality σ(t) and γ(t) are constant over τ − kn∆

n, τ by taking kn∆n to 0 faster
than the mesh of the τj goes to zero, (which it may not at all). Consequently, we let τ depend
upon n in our notation.

We can rewrite the sample and population difference as

E

∥∥∥∥∥ 1

kn∆n

n∑
m=0

∣∣∆n
in+mp

∣∣− ∣∣∣∣m1σ(τn) +
γ(τn)√

2
erfcx

(
σ(τn)

γ(τn)

)∣∣∣∣
∥∥∥∥∥
2
 (26)

=
1

k2n∆
n
E

[∥∥∥∥∥
kn∑

m=0

∣∣∣∣∣
∫ τ(n,m)

τ(n,m+1)
σ(τ(n,m+ 1)) dW (s) +

∫ τ(n,m)

τ(n,m+1)
γ(τ(n,m) dL(s)

∣∣∣∣∣ (27)

− kn
√
∆n

∣∣∣∣m1σ(τn) +
γ(τn)√

2
erfcx

(
σ(τn)

γ(τn)

)∣∣∣∣
∥∥∥∥∥
2]
.

By applying (24), we have

=
1

k2n∆
n
E

[∥∥∥∥∥kn√∆n

∣∣∣∣m1σ(τ(n,m)) +
γ(τ(n,m))√

2
erfcx

(
σ(τ(n))

γ(τ(n,m))

)∣∣∣∣+A(t) (28)

− kn
√
∆n

∣∣∣∣m1σ(τn) +
γ(τn)√

2
erfcx

(
σ(τn)

γ(τn)

)∣∣∣∣
∥∥∥∥∥
2]
.

Simplifying implies this equals

Op

(
k2n(∆

n)2

k2n∆
n

)
+Op(∆

n), (29)

since A(t) has finite-variation.

Step 5

I now show the step function approximation is innocuous. Consider a sequence τn → τ , and define
σ̃(t) = σ(max τn : τn ≤ t), and similarly for γ̃(t). Define ξ2x(t) = sups1,s2<t∧τ |x(s1)− x̃(s2)|2 for x
equal to σ and γ, and let ξ2b (t) =

∑
s1,s2<t∧τ |b(s1)− b(s2)|. These functions exist and are almost

surely finite by localization since σ, γ, and b are locally-bounded. Now, consider the squared
distance between any semimartingale satisfying our assumptions and the one used in (25). Let
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t1, t2 < τ . Consider:

E

[∥∥∥∥∫ t2

t1

µ(s) ds+

∫ t2

t1

σ(s) dW (s) +
1

2

∫ t2

t1

γ(s) dL(s)−
(∫ t2

t1

σ̃(s) dW (s) +
1

2

∫ t2

t1

γ̃(s) dL(s)
)∥∥∥∥2

]
.

(30)
Increasing the range is valid because all of the integrands are positive:

≤E
[∫ τ

t1

µ(s)2(s) +

∫ τ

t1

|σ̃(s)− σ(s)|2 ds+ 1

2

∫ τ

t1

|γ̃(s)− γ(s)|2 ds
]
. (31)

Then we can bound each of the terms:

=(O(1)γ2b (τ) +O(1)γ2σ(τ) +O(1)γ2γ(τ))(τ − t2) = O(1)(τ − t2). (32)

In other words, if we choose a sequence of meshes so that the supremum of their magnitudes
∆n → 0 and the minimal τ − kn∆

n → 0, the entire square converges. As one might expect from
the definition of integration, approximating the integrands by step functions is innocuous.

Finally, we combine the previous steps to bound the entire process. Note, since variances of
sums can be written in terms of variance of the original parts and their covariance, the asymptotic
rate at which the quadratic variation decreases towards zero equals the larger of the asymptotic
rates at which its constituent components do. Let Y (t) be the absolute value of the process derived
in (25). Consider the mean-square deviation of the estimator from its limiting value:

1

k2n∆n
E

[∥∥∥∥∥
kn−1∑
m=0

|∆n
in+mp| − Y (t) + Y (t)−

(
m1σ(τ−)kn

√
∆n +

γ(τ−)√
2

erfcx
(
σ(τ−)

γ(τ−)

)
kn

√
∆n

)∥∥∥∥∥
2]
.

Splitting the term into two parts and applying (29) and (32) gives: 1
k2n∆n

(
O(∆2

nk
2
n) +O(∆nkn)

)
→

0.

B.3 Theorem 5 Instantaneous Diffusion Volatility

Proof. By localization, we can replace Assumption HL with Assumption SHL without loss of gener-
ality. Also, the jump martingale part of the process is a sum of an integral with respect to L(t) and
δ0(t), where the weights depend upon the jumps’ intensity by Theorem 3. The jump increments
of that part are almost surely zero, and so if we separate the space into parts where L(t) is active
and where δ0(t) is active, we only have to deal with the first section. Consequently, we can assume
without loss of generality that the jump part is an integral of with respect to L(t). The part of the
proof regarding the process’s continuous part does change.
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Step 1

I proceed by showing convergence in mean-square, which implies convergence in probability. Note,∣∣∆n
in+mp

∣∣2 = Op(∆
n) for all i, since p(t) is an integral with bounded integrands and integrators

whose quadratic variation is proportional to ∆n. Consider the jump part of the variation. To prove
initial estimator’s consistency, I must show that the jump part converges to zero.

Following Jacod and Protter (2012, 258), for all w, x, y, z ∈ R, ϵ ∈ (0, 1], and v ≥ 1,

∣∣(x+ y + z + w)1{|x+ y + z + w| < v} − x2
∣∣ ≤ K

|x|4

v2
+ ϵx2 +

K

ϵ
((v2 ∧ y2) + z2 + w2). (33)

Define the following four processes. The continuous variation is split into two parts, one with
locally constant volatility and the other with additional deviation coming from changes in the
volatility: Y n(t) := σ(τn)(Wt − Wτn)1{τn ≤ t}, Y ′n(t) :=

∫ t
τn∧t(σ(s) − σ(τn) dW (s), Zn(t) :=∫ t

τn∧t γ(s) dL(s), and B
n(t) :=

∫ t
τn∧t µ(s) ds.

Note, p(τn ∧ t) = Y n(t) + Y
′n(t) + Zn(t) + Bn(t). Now, we can use (33) with x =

∆n
in+mY n

√
∆n

,

y =
∆n

in+mZn
in+m√

∆n
, and w =

∆n
in+mBn

in+m√
∆n

. The main issue here is showing that all of the parts
except for Y n(t) converge to zero because it has correct variance. Take v = vn√

∆n
= ωn, where

ωn = op(1/∆
n) and 1/ωn is op(

√
∆). Then 1

kn∆n

∑kn−1
m=0

∣∣(Y n
t )2 − (pnt )

2
∣∣ is bounded by

1

kn

kn−1∑
m=0

(
K

ω2
n

∣∣∣∣∆n
in+mY

n

√
∆n

∣∣∣∣4 + ϵ

∣∣∣∣∆n
in+mY

n

√
∆n

∣∣∣∣2 + K

ω2
nϵ

∣∣∣∣∆n
in+mZ√
∆nωn

∣∣∣∣2 + K

ϵ

∣∣∣∣∣∆n
in+mY

′n

√
∆n

∣∣∣∣∣
2

+
K

ϵ

∣∣∣∣∆n
in+mB√
∆n

∣∣∣∣2
)
.

(34)
Set ξn =

∑
s∈|τn,τn+(kn+2)∆n||σ(s)− σ(τn)|2, which is bounded and converges to zero, and ϕn =∑

s∈|τn,τn+(kn+2)∆n||γ(s)|
2 The key hard part is bounding ∆n

in+mZ. Clearly, E
∣∣∆n

in+m

∣∣ ≤ ϕn
√
∆n.

Consider the part of the variation in Z(t) that comes from jumps smaller than 1 in magnitude,
where 1 is an arbitrary constant picked for the sake of simplicity:

E|L(0, ϕn) ∧ 1| = ϕn
√
∆n − exp

(
− 1

ϕn
√
∆n

)
(ϕn

√
∆n + 1) ≤ O

(
1√
∆n

)
exp

(
− 1

ϕn
√
∆n

)
. (35)

In addition, since τn is a stopping time, the probability that a jump exceeds 1 in the previous kn
periods declines to 0 almost surely with∆n. Consequently, 1

ω2
n

∆n
in+mZ

√
∆nωn

a.s.
∈ Op

(
1

∆nω3
n

)
exp

(
− 1

ϕn

√
∆n

)
=

op(1) as exponential functions decay faster than polynomials increase.
I use K to refer to an arbitrary constant, which may change. The drift term is ∆n

in+mB, and so∣∣∆n
in+mB

∣∣ ≤ K∆n. Meanwhile, E[
∣∣∆n

in+mY
n
∣∣4|F(in+m−1)∆n ] ≤ K(∆n)2, and E[

∣∣∣∆n
in+mY

′n
∣∣∣n|F(in+m−1)∆n ] ≤

K∆2E[ξn|F(in+m−1)∆n ≤ K∆n. As a consequence, we have the following where ξn is some sequence
converging to zero:

E[
∣∣(Y n

t )2 − (pnt )
2
∣∣] ≤ Kϵ+

K

ϵ
(op(1) + op(1) + E[ξn]). (36)

Taking n→ ∞ and then ϵ→ 0, makes the left-hand side (36) converge to zero.
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Step 2

Consider limn→∞
1

kn∆n

∑kn−1
m=0 |Y n

t |2 is. Its definition implies it converges to the variance of the
increment:

1

kn∆n

kn−1∑
m=0

|στn(Wt −Wτn)1{τn ≤ t}|2 = σ(τn)
2 1

kn

kn−1∑
m=0

∣∣∣∣∆n
in+mW√
∆n

∣∣∣∣2 → σ(τn)
2 (37)

Since the square is a convex function, we can combine these two previous limits, given that the
original expression converges to σ(τn)2. However, this is the local integrated volatility evaluated
at τn, which was the object of interest. Multiplying the expression by a value converging to 1 does
not change the results.

B.4 Theorem 6 Instantaneous Jump Volatility

Proof. Note, 0-subscripts denote population objects. Consider

Q̂n(γ) := g

(∣∣∣∣∣ 1

kn
√
∆

kn−1∑
m=0

∣∣∆n
in+mp

∣∣−m1σ̂(τ−)− γ erfcx
(
σ0

γ
√
2

)∣∣∣∣∣
)
. (38)

Note that Q̂n(γ) is implicitly a continuous function of σ̂n(τ−). By assumption, σ̂n(τ−)
P→σ0,

and so we can suppress that dependence in our notation and plug in σ0. In addition, g is an
increasing function and both g and the absolute value are convex, continuous functions, we can use
the continuous mapping theorem to derive the limiting value of Q̂n(γ).

Q0(γ) := g

(∣∣∣∣γ0 erfcx( σ0

γ0
√
2

)
− γ erfcx

(
σ0

γ
√
2

)∣∣∣∣) . (39)

Clearly, this equals zero when γ = γ0. If both Q̂n(γ) and Q0(γ) are strictly convex, the
minimum is unique. Define A(σ, γ) := γ erfcx

(
σ

γ
√
2

)
. Showing A(σ, γ) is strictly increasing for all

σ is sufficient to show this convexity because of properties assumed about g and the absolute-value
function. Consider

∂

∂γ
γ erfcx

(
σ

γ
√
2

)
= erfcx

(
σ

γ
√
2

)
− σ

γ2
√
2

∂

∂x
erfcx(x)

∣∣∣∣
x= σ

γ
√
2

. (40)

Since erfcx is a positive, decreasing function, the last term is negative, and so the entire equation
is strictly positive. This result implies that Q̂n(γ) and Q0(γ) are both strictly convex as functions
of γ, which then implies the minimum given above is strict.

Since γ0 > 0, it lies in the interior of a convex set. By Newey and McFadden (1994, Theorem
2.7), γ̂n is a unique minimizer and γ̂n

P→ γ0.
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Appendix C Simulation Results (For online publication only)

In this section, I report several other simulation results. They are similar to those reported in the
paper, i.e., paper’s results are quite robust.

C.1 Market Microstructure

The data have substantial market microstructure noise. To mimic its effect, I follow Christensen,
Oomen, and Podolskij (2014). They assume we observe rin + uin , here uin follows

uin = βuin−1 + ϵin , ϵin
i.i.d.∼ N (0, ω2(1− β2)). (41)

I set ω2 = 1.00× 10−10 because that is the value obtained from the data using the jump robust
noise variance bipower-type estimator of Oomen (2006):

1

T

T−1∑
t=1

∆n

2

∑
t−1<in,in−1<t

∣∣∆n
inp
∣∣∣∣∆n

in−1p
∣∣. (42)

I set β = 0.77, which is the value used in Christensen, Oomen, and Podolskij (2014). They set it
to match the sign of the S&P 500 futures contract on the day of the 2010 Flash Crash.

I now add the market-microstructure correction described in Section 4. I also set θ = 0.5

(the constant for the pre-averaging correction) and κ̄ = 1000 (the constant for the instantaneous
estimator), which are the values used in the actual estimation. I chose these values because they
appeared to work well in the simulated data. As we can see in Figure 3, the estimators are slightly
biased upwards in this scenario, especially the estimators for σ2t .

Figure 3: Discrete-Time Simulation Results with Microstructure
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(b) γt
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Even though they are slightly biased upwards, the proposed estimators perform reasonably well
in practice. This claim does not hold for the other estimators in the literature. In Table 7, I report
the mean-square error of the previous estimates averaged over a year’s worth of simulations. Here
I have approximately 1/2 the average error in estimating σ2t and 1/5 the error in estimating γ2t .
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Although the jump variation estimators in the literature are not consistent for γ2t , they should be
asymptotically unbiased. In large finite-samples, they appear both biased and inconsistent.

Table 7: Relative Simulation Error with Microstructure

Obs. per Min. E[(σ̂t−σt)
2]

E[σt]
E[(γ̂t−γt)

2]
E[γt]

BNS LTT 5 Min. Proposed BNS LTT 5 Min. Proposed
≈ 2 0.74 0.41 0.42 1.00 1.01 1.01 0.83 0.65
≈ 12 0.82 0.46 0.46 0.36 1.01 1.01 0.82 0.41
≈ 60 1.11 0.69 0.69 0.36 1.01 1.01 0.84 0.21
≈ 180 1.58 1.06 1.06 0.85 1.01 1.09 0.81 0.18

C.2 Simulation Error with only a few Jumps

I simulate the volatilities using the DGP described in Table 1. Then instead of simulating the prices
using Section 5.1, I follow Huang and Tauchen (2005) and assume the jump locations follow a time-
invariant Poisson distribution and the magnitudes are Gaussian distributed. I set the Poisson’s
intensity to result in an average of one jump per day. I set the variance of the magnitude so
that the jump process has the volatility given by γ2t . This DGP should be quite difficult for my
procedure because there are very few jumps. It drastically violates the infinite-activity assumption.
I also add the microstructure noise as described in (41).

Table 8: Relative Simulation Error with Microstructure and Poisson Jumps

Obs. per Min. E[(σ̂t−σt)
2]

E[σt]
E[(γ̂t−γt)

2]
E[γt]

BNS LTT 5 Min. Proposed BNS LTT 5 Min. Proposed
≈ 2 0.88 0.12 0.20 0.88 1.01 1.01 0.78 0.34
≈ 12 0.95 0.13 0.21 0.51 1.01 1.01 0.79 0.32
≈ 60 1.17 0.32 0.41 0.09 1.01 1.01 0.80 0.39
≈ 180 1.55 0.77 0.85 0.58 1.01 1.01 0.75 0.36

Appendix D Volatility: Empirical Results (For online publication only)
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Table 9: Univariate Autoregressive Models: AR(BIC)

log(σ2t ) log(γ2t )
Intercept −0.68 (−0.88,−0.48) −0.62 (−0.81,−0.42 )
Lag 1 0.54 (0.51, 0.58) 0.46 (0.43, 0.49 )
Lag 2 0.15 (0.11, 0.18) 0.17 (0.13, 0.21 )
Lag 3 0.06 (0.02, 0.09) 0.05 (0.02, 0.09 )
Lag 4 0.07 (0.04, 0.11) 0.08 (0.04, 0.11 )
Lag 5 0.04 (0.00, 0.08) 0.09 (0.05, 0.13 )
Lag 6 0.00 (−0.03, 0.04) 0.01 (−0.02, 0.05 )
Lag 7 −0.00 (−0.04, 0.04) 0.01 (−0.03, 0.05 )
Lag 8 −0.00 (−0.04, 0.04) −0.02 (−0.05, 0.02 )
Lag 9 0.08 (0.04, 0.11) 0.08 (0.05, 0.12 )
R2 76% 74%
Innovation Variance 0.31 0.25

Table 10: Vector Autoregression Models: VAR(BIC)

log(σ2t ) log(γ2t )
Intercept −0.33 (−0.54,−0.11) −0.88 (−0.73,−0.69 )
log(σ2t−1) 0.40 (0.36, 0.44) 0.24 (0.24, 0.27 )
log(γ2t−1) 0.25 (0.20, 0.29) 0.30 (0.19, 0.34 )
logσ2t−2 0.11 (0.07, 0.16) 0.01 (−0.06, 0.04 )
log γ2t−2 0.01 (−0.03, 0.06) 0.13 (0.09, 0.17 )
log(σ2t−3) 0.05 (0.01, 0.09) −0.01 (−0.12, 0.03 )
log(γ2t−3) −0.00 (−0.05, 0.04) 0.06 (0.02, 0.10 )
logσ2t−4 0.07 (0.02, 0.11) −0.03 (−0.08, 0.01 )
log γ2t−4 0.01 (−0.03, 0.06) 0.11 (0.05, 0.15 )
log(σ2t−5) 0.03 (−0.01, 0.07) −0.02 (−0.04, 0.02 )
log(γ2t−5) 0.04 (−0.00, 0.09) 0.14 (−0.01, 0.18 )

R2 76% 75%

Innovation Covariance
(

0.31 0.17
0.17 0.24

)

Table 11: Log-Volatility Correlations

log(σ2t ) log
(
γ2t
)

log
(
σ2t + γ2t

)
log
(

γ2
t

σ2
t+γ2

t

)
rxt 1{FOMC}t

log
(
σ2t
)

1.00 0.90 0.97 −0.50 −0.18 0.06
log
(
γ2t
)

0.90 1.00 0.98 −0.08 −0.14 0.09
log
(
σ2t + γ2t

)
0.97 0.98 1.00 −0.29 −0.16 0.08

log
(

γ2
t

σ2
t+γ2

t

)
−0.29 −0.08 −0.29 1.00 0.13 0.04
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Appendix E Volatility and Excess Returns (For online publication only)

E.1 Contemporaneous Regression

This section replicates the standard result that volatility and returns are contemporaneously neg-
atively correlated, (Lettau and Ludvigson 2010) and splits it into relationships with σ2t + γ2t and

γ2
t

σ2
t+γ2

t
.

Table 12: E
[
rxt

∣∣∣σ2t + γ2t ,
γ2
t

σ2
t+γ2

t

]
(OLS)

Regressors Specifications

Intercept −4.55 1.02 −3.17 −1.27
[5.81] [6.48] [−3.94] [−0.54]
−0.46 −0.39 −0.19log

(
σ2t + γ2t

)
[−5.58] [−4.12] [−0.85]

1.65 1.13 3.91log
(

γ2
t

σ2
t+γ2

t

)
[5.81] [4.06] [1.07]

0.29log
(
σ2t + γ2t

)
log
(

γ2
t

σ2
t+γ2

t

)
[0.80]

R̄2 2.67% 1.61% 3.35% 3.42%

E.2 Risk Premia Estimates: Additional Results

Estimating risk premia is difficult because the signal-to-noise ratio is quite low. However, because
the regressions are run at the daily level and there are 3700 datapoints, most of the potential biases
are not relevant. For example, the Stambaugh (1999) bias declines at 1

# datapoints rate and so should
not noticeably affect my estimates.

I also consider several other specification below. The volatility coefficients are robust to the
particular instruments chosen (Table 14). Results from running the regression over a subsamples
agree with the main results, but are not always statistically significant (Table 15). Estimates in
levels and unweighted estimates either agree with the main results or are not statistically significant
(Table 15 and Table 13).

I am using estimated regressors, and so we might worry about the generated regressors problem.
However, because I have a lot of intra-day data, the regressors should be estimated relatively
precisely. Furthermore, the error that still exists mostly arises from the difficulty in disentangling
pJ t) and pD(t). The deconvolution procedure depends upon the magnitude of the increments
relative to their standard deviation, not their sign. Consequently, it should be approximately
independent across time, and so the instruments used above are an asymptotically valid way of
dealing with this type of measurement error.
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Table 13: News Premia Estimates in Levels

(Volatility is measured in yearly terms. (252 * daily)).
l ∈ {1, 2, 5, 25}.

Regressors Instruments
Intercept σ2t γ2t (σ2t )(γ

2
t ) 1{FOMC}t σ2t−l . . . γ2t−l . . . (σ2t−l)(γ

2
t−l)

0.28 0.08 ✓
[8.85] [3.11]
0.28 0.08 ✓ ✓ ✓ ✓
[8.80] [2.74]
0.27 0.07 ✓
[7.52] [2.53]
0.24 0.10 ✓ ✓ ✓ ✓
[6.63] [3.33]
0.31 0.16 −0.09 ✓ ✓
[7.25] [1.35] [−0.77]
0.24 0.02 0.09 ✓ ✓ ✓ ✓
[5.57] [0.22] [1.05]
0.23 0.36 −0.50 −0.00 ✓ ✓ ✓ ✓
[5.75] [1.39] [−1.14] [1.53]
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Table 14: News Premia Estimates: Other Instruments

ψt := log
(
σ2t + γ2t

)
, ϕt := log

(
γ2
t

σ2
t+γ2

t

)
Regressors Instruments

Intercept 1{FOMC}t ψt−1 ϕt−1 1{FOMC}t ϕt−l . . . ψt−l . . . ψt−lϕt−l…
l ∈ {1, 2, 5, 25}

3.05 0.25 ✓
[6.83] [6.07]
3.01 0.25 ✓ ✓ ✓ ✓
[6.03] [6.77]
−2.02 −4.21 ✓
[−3.99] [−4.63]
−2.05 −4.28 ✓ ✓ ✓ ✓
[−5.28] [−6.20]

0.25 0.17 −3.47 ✓ ✓ ✓ ✓
[0.36] [3.83] [−5.01]
0.11 0.25 0.16 −3.57 ✓ ✓ ✓ ✓
[0.14] [1.24] [3.59] [−5.02]

l = 1

3.10 0.25 ✓
[6.85] [6.10]
−2.71 −5.44 ✓
[−2.86] [−3.20]
−1.43 0.11 −5.22 ✓ ✓
[−0.84] [1.35] [−2.94]
−1.03 0.29 0.12 −4.76 ✓ ✓ ✓ ✓
[−0.76] [1.36] [1.68] [−3.56]
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Table 15: News Premia Estimates: Robustness

Regressors Instruments

Intercept 1{FOMC}t log(σ2
t + γ2t ) log( γ2

t

σ2
t+γ2

t
) 1{FOMC}t log( γ2

t−l

σ2
t−l+γ2

t−l
) . . . log(σ2

t−l + γ2t−l) . . .
log( γ2

t−l

σ2
t−l+γ2

t−l
) ·

log(σ2
t−l + γ2t−l)

Sub-period Analysis
2003–2007 −2.59 0.69 0.08 −6.93 ✓ ✓ ✓ ✓

[−0.67] [1.58] [0.36] [−2.05]
2008–2012 0.17 0.79 0.06 −1.56 ✓ ✓ ✓ ✓

[0.10] [1.82] [0.55] [−1.33]
2013–2007/9 3.71 −0.26 0.40 −1.94 ✓ ✓ ✓ ✓

[2.50] [−1.05] [4.40] [−1.66]
Unweighted Analysis

0.63 0.06 ✓ ✓ ✓ ✓
[0.82] [0.77]
0.03 −0.04 ✓ ✓ ✓ ✓
[0.06] [−0.04]
−0.77 −0.02 −1.14 ✓ ✓ ✓ ✓
[−0.62] [−0.17] [−1.50]
−1.42 0.93 −0.09 −0.81 ✓ ✓ ✓ ✓
[−1.13] [3.02] [−0.99] [−0.89]
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Table 16: Instrument Variables: First Stage Regression

ψt := log
(
σ2t + γ2t

)
, ϕt := log

(
γ2
t

σ2
t+γ2

t

)
Regressand Intercept ϕt−1 ϕt−2 ϕt−5 ϕt−25 ψt−1 ψt−2 ψt−5 ψt−25 ψt−1ϕt−1 R̄2 F̂

−0.44 0.26 6.58% 62.2
[−25.84] [7.88]
−0.28 0.18 0.16 0.12 0.06 11.53% 110.0log

(
γ2
t

σ2
t+γ2

t

)
[−9.48] [8.95] [7.14] [6.37] [3.39]
−0.61 0.14 0.13 0.10 0.07 −0.06 −0.00 0.01 0.02 14.63% 248.1
[−8.39] [8.38] [6.86] [5.51] [4.07] [−6.89] [−0.25] [1.91] [3.14]
−0.23 0.73 0.11 0.10 0.07 −0.02 −0.00 0.01 0.02 0.06 15.49% 525.4
[−2.35] [7.05] [6.51] [5.43] [3.90] [−1.51] [−0.07] [1.87] [3.34] [5.73]
−2.10 0.19 66.28% 1986.4

[−10.85] [44.57]
−0.57 0.61 0.17 0.13 0.04 79.19% 7712.2log

(
σ2t + γ2t

)
[−4.94] [26.42] [8.96] [8.55] [4.07]
−0.59 −0.15 0.00 0.07 0.06 0.60 0.16 0.13 0.05 79.27% 9517.4
[−4.99] [−3.47] [0.11] [1.79] [1.65] [27.95] [8.80] [8.92] [4.40]
−1.31 −1.23 0.02 0.07 0.07 0.53 0.16 0.13 0.05 −0.11 79.43%20 140
[−5.84] [−5.05] [0.63] [1.91] [1.92] [18.91] [8.70] [8.92] [4.70] [−4.43]
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